簡易檢索 / 詳目顯示

研究生: 賴韋達
Wei-Ta Lai
論文名稱: 以二甲基聯胺與三乙基鎵有機金屬化學氣相沉積系統低溫成長氮化鎵一維奈米線之研究
low temperature synthesis of GaN nanowires by TEGa-DMHy MOCVD system
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 江志強
Jyh-Chiang Jiang
林麗瓊
Li-Chyong Chen
胡銘顯
Ming-Shien Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 氮化鎵奈米線二甲基聯胺有機金屬化學氣相沉積
外文關鍵詞: gallium nitride, nanowires, dimethylhydrazine, MOCVD
相關次數: 點閱:299下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用在低溫即具有分解能力的聯胺系列化合物-二甲基聯胺(DMHy)來取代反應性低的氨氣(NH3)作為氮源先驅物,同時以分解溫度較低之鎵源-三乙基鎵(TEGa),來成長氮化鎵奈米線,期望以TEGa-DMHy兩種較低溫度即可分解的先驅物組合,來大幅降低氮化鎵奈米線成長的溫度。由實驗結果得知,TEGa-DMHy系統可在480~655℃範圍內成功地成長出氮化鎵奈米線。這是首次利用二甲基聯胺為氮源成長氮化鎵奈米線的成果,且大幅降低成長溫度到軟性基板可承受的溫度範圍內。此外,TEGa-DMHy系統可藉由進料的V/III比例來控制奈米線的直徑以及成長速率,在較高進料的V/III比例時可得到較小的直徑和較快的成長速度,並在V/III=35時可成長出直徑小於氮化鎵的波爾半徑(~11nm)之奈米線,預期可觀察到特殊的電子傳輸與光電特性。


    Gallium nitride (GaN) nanowires have been synthesized by metalorganic chemical vapor deposition (MOCVD) technique using dimethylhydrazine (DMHy) and triethylgallium (TEGa) as the reactants at low temperatures ranging from 480℃ to 655℃. Emphasis of this study is placed on evaluating the possibility of using DMHy, a new nitrogen precursor with low decomposition temperature, for developing low temperature process of GaN nanowires growth. This newly proposed process may hold great promise for applications in solar cell on glass substrate. Moreover, the nanowires diameter and growth rate is controlled by V/III input ratio in TEGa-DMHy MOCVD system, higher V/III input ratio results in smaller diameter and higher growth rate. TEM results show that many of the synthesized nanowires are of diameters less than the Bohr radius of GaN (~11 nm) at higher V/III input ratio (V/III=35). Hence, this propose makes possible further investigations of the quantum-confinement effects in transport and optoelectronic properties of GaN.

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖 索 引 VI 表 索 引 IX 第一章、緒論 1 1.1 前言 1 1.2 氮化鎵(GaN) 2 1.2.1 氮化鎵發展過程 2 1.2.2 氮化鎵的材料特性 4 1.3 氮化鎵製程簡介 5 1.3.1 鹵素氣相沉積法(HVPE) 5 1.3.2 分子束磊晶法(MBE) 5 1.3.3 有機金屬化學氣相沉積法(MOCVD) 6 1.4 低溫氮化鎵製程簡介 7 1.4.1 低溫製程 7 1.4.2 聯胺衍生物系列化合物氮源發展 8 1.5 一維奈米材料 12 1.5.1 成長一維奈米材料的方法 15 1.5.2 成長氮化鎵一維奈米結構 20 1.6 研究方針與策略 21 第二章、實驗相關部分 22 2.1 實驗氣體及藥品 22 2.2 實驗裝置設備 25 2.3 實驗步驟 26 2.4 分析儀器 27 2.4.1 掃描式電子顯微鏡(SEM) 27 2.4.2 穿透式電子顯微鏡(TEM) 28 2.4.3 X光繞射分析儀(XRD) 29 2.4.4 拉曼光譜分析儀(Raman) 30 2.4.5 光激發螢光光譜儀(PL) 32 2.4.6 X光電子能譜化學分析儀(XPS) 33 第三章、結果與討論 34 3.1 TEGa-DMHy系統成長氮化鎵奈米線的形貌分析 34 3.2 TEGa-DMHy系統成長氮化鎵奈米線的結構分析 38 3.2.1 穿透式電子顯微鏡(TEM)的微結構分析 38 3.2.2 X光繞射(XRD)分析 42 3.3 TEGa-DHMy系統成長氮化鎵奈米線的光學性質分析 44 3.3.1 紫外光-拉曼光譜(UV-Raman) 44 3.3.2 光激發螢光光譜(PL)與螢光激發光譜(PLE) 47 3.4 X光電子能譜化學分析(XPS) 51 3.5 成長機制 52 第四章、結論與未來展望 54 參考文獻 55 附 錄 62 A.金(Au)-鎵(Ga) 二元相圖 62 B.各有機金屬先驅物分解比例與溫度的關係圖 63 C.各種氮源先驅物的化學結構圖 64 D.波爾半徑(Bohr radius) 65 作者簡介 66

    [1]S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys., 34, L687 (1995).
    [2]S. Nakamura, M. Senoh, S. Naghama, N. Iwasa, T. Yamada, T. Matshushita, and H. Kiyoku, Jpn. J. Appl. Phys., 35, 74 (1996).
    [3](a) A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, S. Kaksenka, and H. Temkin, Appl. Phys. Lett., 71, 2334 (1997). (b) W. Yang, T. Nohava, S. Krishnankntty, R. Torreano, S. Mcpherson, and H. Marsh, Appl. Phys. Lett., 73, 1086 (1998).
    [4]S. Nakamura, Science, 281, 956 (1998).
    [5]X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi, Appl. Phys. Lett., 67, 2028 (1995).
    [6]陳羿維,「從台灣LED產業觀察全球LED產業動向」,光連雙月刊,第67期,第33~38頁,2007年
    [7]H. P. Maruska, and J. J. Tietjen, Appl. Phys. Lett., 15, 327 (1969).
    [8]J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, J. Luminescence, 4, 63 (1971).
    [9]H. M. Manasevit, W. I. Simpson, J. Electrochem. Soc., 118, 1864 (1971).
    [10]E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, New York (2006).
    [11]S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett., 42, 427 (1983).
    [12]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., 48, 353 (1986).
    [13]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., 28, L2112 (1989).
    [14]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., 31, L139 (1992).
    [15]S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994).
    [16](a) S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys., 76, 8189 (1994).(b) S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys., 34, L797 (1995). (c) S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, amd T. Mukai, Jpn. J. Appl. Phys., 34, L1332 (1995).
    [17]S. Nakamura, S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, CRC Press, New York (2000).
    [18]P. W. Lee, T. R. Omstead, D. R. McKENNA, and K. F. Jensen, J. Crystal Growth, 85, 165 (1987).
    [19]S. S. Liu, and D. A. Stevenson, J. Electrochem. Soc., 125, 1161 (1978).
    [20](a) M. Mizuta, S. Fujieda, and Y. Matsumoto, Jpn. J. Appl. Phys., 25, L945 (1986). (b) S. Fujieda, M. Mizuta, and Y. Matsumoto, Jpn. J. Appl. Phys., 26, 2067 (1987). (c) S. Fujieda, and Y. Matsumoto, Jpn. J. Appl. Phys., 30, L1665 (1991). (d) D. K. Gaskill, N. Bottka, and M. C. Lin, Appl. Phys. Lett., 48, 1449 (1986).
    [21]Z. Liu, R. T. Lee, and G. B. Stringfellow, J. Crystal Growth, 191, 1 (1998).
    [22]E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, and S. A. Rushworth, J. Crystal Growth, 217, 47 (2000).
    [23]R. T. Lee, and G. B. Stringfellow, J. Crystal Growth, 204, 247 (1999).
    [24]S. Nishide, T. Yoshimura, Y. Takamatsu, A. Ichige, K. Pak, N. Ohshima, and H. Yonezu, J. Crystal Growth, 189/190, 325 (1998).
    [25]S. Miyoshi, K. Onabe, N. Ohkouchi, and H. Yaguchi, R. Ito, J. Crystal Growth, 124, 439 (1992).
    [26]H. Sato, H. Takahashi, A. Watanabe, and H. Ota, Appl Phys. Lett., 68, 3617 (1996).
    [27]J. Wu, H. Yaguchi, H. Nagasawa, Y. Yamaguchi, K. Onabe, Y. Shiraki, and R. ITO, Jpn. J. Appl. Phys., 36, 4241 (1997).
    [28]Y. Kobayashi, F. Scholz, and N. Kobayashi, Jpn. J. Appl. Phys., 36, 2592 (1997).
    [29]J. Wu, H. Yaguchi, K. Onabe, Y. Shiraki, and R. ITO, Jpn. J. Appl. Phys., 37, 1440 (1998).
    [30]E. D. Bourret-Courchesne, Q. Ye, K-M Yu, and J. W. Ager III, J. Crystal Growth, 231, 89 (2001).
    [31]Y. J. Hsu, L. S. Hong, K. F. Huang, and J. E. Tsay, Thin Solid Films, 419, 33 (2002).
    [32]J. Sormunen, J. Toivonen, M. Sopanen, and H. Lipsanen, Appl. Surf. Sci., 222, 286 (2004).
    [33]E. H. Park, J. S. Park, and T, K. Yoo, J. Crystal. Growth, 272, 426 (2004).
    [34]S. Nishide, T. Yoshimura, Y. Takamatsu, A. Ichige, K. Pak, N. Ohshima, and H. Yonezu, J. Crystal Growth, 189/190, 325 (1998).
    [35]U. W. Pohl, K. Knorr, C. Moller, U. Gernert, W. Richter, J. Blasing, J. Christen, J. Gotteriedsen, and H. Schumann, Jpn. J. Appl. Phys., 38, L105 (1999).
    [36](a)Y. J. Hsu, L. S. Hong, and J. E. Tsay, J. Crystal Growth, 252, 144 (2003). (b) Y. J. Hsu, L. S. Hong, J. C. Jiang, and J. C. Chang, J. Crystal Growth, 266, 347 (2004).
    [37]John Emsley, The Elements, Oxford University Press, New York (1991).
    [38]Y. J. Hsu, L. S. Hong, and J. C. Jiang, Thin Solid Films, 498, 100 (2006).
    [39](a) A. Nakadaira, and H. Tanaka, J. Electron. Mater., 26, 320 (1997). (b) A. Saxler, D. Walker, P. Kung, X. Zhang, M. Razeghi, J. Solomon, W. C. Mitchel, and H. R. Vydyanath, Appl. Phys. Lett., 71, 3272 (1997).
    [40]K. C. Wong, B. G. McBurnett, R. D. Culp, A. H. Cowley, and J. G. Ekerdt, Surf. Sci., 416, 480 (1998).
    [41]A. P. Alivisatos, Science, 271, 933 (1996).
    [42]馬振基,奈米材料科技原理與應用,全華科技圖書 (2005).
    [43]W. P. Halperin, Rev. of Modern Phys., 59, 532 (1986).
    [44](a) K. K. Likharev, and T. Claeson, Sci. Am., 266, 80 (1992). (b) K. K. Likharev, IBM J. Res Dev., 32, 144 (1998).
    [45]S. Ijima, Nature, 354, 56 (1911).
    [46]E. W. Wong, P. E. Sheehan, and C.M. Lieber, Science, 277, 1971 (1997).
    [47]X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature, 409, 66 (2001).
    [48](a) F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett., 4, 1975 (2004). (b) F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, Nano Lett., 5, 2287 (2005).
    [49]Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 293, 1289 (2001).
    [50]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 449, 885 (2007).
    [51](a) W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002). (b) C. J. Novotny, E.T. Yu, and K. L. Yu, Nano Lett., 8, 775 (2008)
    [52](a) M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater., 4, 455 (2005). (b) J. B. Baxter, and E. S. Aydil, Appl. Phys. Lett., 86, 053114 (2005). (c) J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku, and J. Y. Lai, Appl. Phys. Lett., 90, 213109 (2007). (d) C. H. Ku, and J. J. Wu, Appl. Phys. Lett., 91, 093117 (2007).
    [53]R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
    [54]Y. Wu, and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
    [55](a) D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett., 72, 3458 (1998). (b) A. M. Morales, and C. M. Lieber, Science, 279, 208 (1998). (c) Y. Wu, and P. Yang, Adv. Meter., 13, 520 (2001).
    [56](a) C. C. Chen, and C. C. Yeh, Adv. Mater., Adv. Mater., 12, 738 (2000). (b) C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc., 123, 2791 (2001).
    [57](a) M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater., 16, 537 (2006). (b) Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, and L. C. Chen, J. Crystal Growth, 269, 87 (2004). (c) C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett., 81, 22 (2002). (d) S. C. Shi, C. F. Chen, G. M. Hsu, J. S. Hwang, S. Chattopadhyay, Z. H. Lan, K. H. Chen, and L. C. Chen, Appl. Phys. Lett., 87, 203103 (2005).
    [58](a) M. Borgstrom, K. Deppert, L. Samuelson, W. Seifert, J. Crystal Growth, 260, 18 (2004). (b) K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Nature Mater., 3, 380 (2004).
    [59](a) C. Ma, and Z. L. Wang, Adv. Mater., 17, 2365 (2005). (b) Y. Hao, G. Meng, Z. L. Wang, C. Ye, and L. Zhang, Nano Lett., 6, 1650 (2006). (c) S. K. Chan, Y. Cai, I. K. Sou, and N. Wang, J. Crystal Growth, 278, 146 (2005).
    [60](a) X. D. Wang, C. J. Summers, and Z. L. Wang, Nano Lett., 4, 423 (2004). (b) B. Zheng, Y. Y. Wu, P. Yang, and J. Liu, Adv. Mater., 14, 122 (2002). (c) Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L, C. Chen, and C. C. Chen, Adv. Funct. Mater., 14, 233 (2004).
    [61]C. C. Tang, Y. Bando, T. Sato, and K. Kurashima, Adv. Mater., 14, 1046 (2002).
    [62]T. Hashishin, Y. Kaneko, H. Iwanaga, and Y. Yamamoto, J. Mater. Sci., 34, 2193 (1999).
    [63]F. C. Frank, Discuss. Farady Soc., 23, 48 (1949).
    [64]Z. R. Dai, Z. W. Pan, and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003).
    [65](a) H. Chik, and J. M. Xu, Mater. Sci. Eng. R, 43, 103 (2004). (b) M. Zheng, L. Zhang, X. Zhang, J. Zhang, G. Li, Chem. Phys. Lett., 344, 298 (2001).
    [66]W. Han, S. Fan, Q. Li, and Y. Hu, Science, 277, 1287 (1997).
    [67](a) A. M. Morales, and C. M. Lieber, Science, 279, 208 (1998). (b) X. Duan, and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
    [68](a) R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater., 15, 635 (2003). (b) S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, and C. S. Lee, J. Mater. Res., 14, 4503 (1999). (c) W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett., 345, 377 (2001).
    [69]H. M. Kim, T. W. Kang, and K. S. Chung, Adv. Mater., 15, 567 (2003).
    [70]L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett., 82, 1601 (2003).
    [71]K. W. Chang, and J. J. Wu, J. Phys. Chem. B, 106, 7796 (2002).
    [72]C. H. Hsieh, L. J. Chou, Y. L. Chueh, and M. T. Chang, J. Vac. Sci. Technol. A, 24, 1635 (2006).
    [73](a) T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, Nano Lett., 3, 1063 (2003). (b) T. Kuykendall, P. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nature Mater., 3, 524 (2004).
    [74](a) P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, and T. Sands, Nano Lett., 5, 1847 (2005). (b) S. D. Hersee, X. Sun, and X. Wang, Nano Lett., 6, 1808 (2006).
    [75]Epichem corporation website, http://www.safchitech.com
    [76]汪建民,材料分析,中國材料科學學會,台灣 (1998).
    [77]B. D. Cullity, and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, New Jersey (2001).
    [78]W. H. Weber, and R. Merlin, Raman Scattering in Materials Science, Springer, New York (2000).
    [79](a) X. Chen, J. Xu, R. M. Wang, and D. Yu, Adv. Mater., 15, 419 (2003). (b) Y. Xie, Y. Qian, W. Wang, S. Zhang, and Y. Zhang, Science, 272, 1926 (1996).
    [80]W. Hayes, and R. Loudon, Scattering of Light in Crystals, Wiley, New York (1978).
    [81]H. Harima, J. Phys.: Condens. Matter, 14, R967 (2002).
    [82]M. Cardona, Light Scattering in Solid I, Springer, New York (1983).
    [83](a) D. Behr, R. Niebuhr, J. Wagner, K. H. Bachem, and U. Daufmann, Appl. Phys. Lett., 70, 363 (1997). (b) M. Kuball, J. Gleize, S. Tanaka, and Y. Aoyagi, Appl. Phys. Lett., 78, 987 (2001). (c) X. B. Chen, J. L. Morrison, J. Huso, L. Bergman, and A. P. Purdy, J. Appl. Phys., 97, 024302 (2005).
    [84]C. L. Hsiao, L. W. Tu, T. W. Chi, M. Chen, T. F. Young, C. T. Chia, and Y. M. Chang, Appl. Phys. Lett., 90, 043102 (2007).
    [85]R. Armitage, Q. Yang, and E. R. Weber, J. Appl. Phys., 97, 073524 (2005)
    [86]S. Akhtar, K. Usami, Y. Tsuchiya, H. Mizuta, and S. Oda, Appl. Plys. Express, 1, 014003 (2008).
    [87]Optera corporation website, http://www.optera.com
    [88]H. Okamoto, P. R. Subramanian, L. Kacprazk, Binary Alloy Phase Diagrams, ASM International, Materials Park.
    [89](a) M. Fox, Optical Properties of Solid, Oxford University Press, New York (2001). (b) B. K. Ridley, Quantum Processes in Semiconductors, Clarendon Press, New York (1982).

    QR CODE