簡易檢索 / 詳目顯示

研究生: 鄭景仁
ZHENG - JING REN
論文名稱: 分子動力學模擬奈米鈦線[0001]/[-12-10]與板材[-12-10]方向單軸拉伸狀態之微觀行為分析
Microbehavior Analysis of Ti Nanowires in [0001]/[-12-10] direction and Nanoplates in [-12-10] direction under uniaxial stretching by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 鍾俊輝
Chun-Hui Chung
雷添壽
Tien-Shou Lei
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 170
中文關鍵詞: 分子動力學奈米線奈米板材拉伸
外文關鍵詞: Molecular Dynamics Simulation, Nanowires, Nanoplates, Stretching, Titanium
相關次數: 點閱:292下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究目的為利用分子動力學,探討鈦奈米線分別在[-12-10]、[0001]方向及鈦奈米板材在[-12-10]方向的拉伸,並以不同應變速率和板材厚度等條件,探討其降伏機理、流動應力及破斷模式。
    模擬結果顯示,奈米線與板材在不同應變速率下,其降伏應力與楊氏係數沒有太大變化。鈦奈米線[0001]方向的拉伸在降伏時局部區域會產生HCP晶格扭曲之過渡態,促使HCP晶體由[0001]轉變為[10-10]的拉伸方向,且轉變過程之中會因為晶體扭曲行為,而造成FCC晶體結構的產生。鈦奈米線[-12-10]方向的拉伸,降伏時會啟動HCP之次滑動面系統。鈦奈米線兩個拉伸方向皆會在HCP金字塔平面由表面射入部分差排,造成FCC堆積錯誤的產生,且FCC堆積錯誤隨著拉伸過程逐漸地擴大,並在到達一定量後於堆積錯誤中{111}面上,產生部分差排的滑移,藉由部分差排的不斷滑移,最後造成奈米線的破斷。而鈦奈米板材在[-12-10]方向的拉伸,其降伏機制主要也是以HCP之金字塔平面,由表面產生差排射入,最後奈米板材藉由不斷地從表面射入差排、滑移,致使板材破斷。


    The main purpose of this paper is using the molecular dynamics to investigate titanium nanowires in [-12-10] and [0001] direction, and titanium nanoplates in [-12-10] direction of stretch in different strain rates, sheet thickness and other conditions to explore its yield mechanism, the flow stress and the breaking mode.
    Simulation results show, when the nanowires and nanoplates of stretch in different strain rates, its yield stress and Young's modulus do not change significantly. When titanium nanowires of stretch yields in [0001] direction, the transition would happened with the HCP crystals from [0001] to [10-10] stretch direction, and it is possible to causes FCC crystals formation in the transition. When titanium nanowires of stretch yields in [-12-10] direction, it will use pyramidal plane system to slip. Titanium nanowires in these two directions would use pyramidal plane system to slip and decomposed into two partial dislocations and cause the FCC stacking fault formation. FCC stacking fault will expand gradually as the stretching process. When it reaches a certain number of FCC stacking fault, the partial dislocations would slip again in FCC stacking fault with FCC {111} planes. With the partial dislocations continues slip in FCC stacking fault, it would finally cause the nanowires breaking. The nanoplates of stretch yields in [-12-10] also use pyramidal plane system to slip. Finally the nanoplates use dislocations slip from nanoplates surface and cause it breaking.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機及目的 1.2 文獻回顧 第二章 分子動力學基礎理論 2.1 分子動力學之基本假設 2.2 分子間作用力與勢能函數 2.3 運動方程式及演算法 2.4 Verlet 表列法 2.5 無因次化 2.6 原子級應力計算方法 2.7 Centrosymmetry參數(CSP) 第三章 模擬步驟與模型建立 3.1 程式模擬步驟 3.1.1 初始設定(Initialization) 3.1.2 系統平衡(Equilibration) 3.1.3 動態模擬(Production) 3.2 模型建立 第四章 結果與討論 4.1 應力計算方法之修正 4.2 鈦奈米線[0001]之拉伸行為分析 4.2.1 鈦奈米線2×10^8之拉伸應變速率 4.2.2 鈦奈米線6.3×10^8之拉伸應變速率 4.2.3 鈦奈米線2×10^9之拉伸應變速率 4.3 鈦奈米線[-12-10]之拉伸行為分析 4.3.1 鈦奈米線2×10^8之拉伸應變速率 4.3.2 鈦奈米線6.3×10^8之拉伸應變速率 4.3.3 鈦奈米線2×10^9之拉伸應變速率 4.4 鈦奈米板材[-12-10]之拉伸行為分析 4.4.1 鈦三層原子厚奈米板材 2×10^9之拉伸應變速率 4.4.2 鈦五層原子厚奈米板材 2×10^9之拉伸應變速率 4.4.3 鈦七層原子厚奈米板材 2×10^9之拉伸應變速率 4.5 綜合討論 第五章 結論與建議 5.1 結論 5.2 未來研究方向與建議 參考文獻 附錄A

    C. M. Liber, "Nanoscale Science and Technology: Building a Big Future from Small Things" , MRS Bull, Vol.28, pp.486-491(2003).
    D. Huo, Y. Liang and K. Cheng, "An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MD simulation" , Journal of Mechanical Engineering Science, Vol. 221, pp. 259-266 (2007) .
    P.G. Partridge, " The crystallography and deformation modes of hexagonal close-packed metals" Metall. Rev., 12 (118), pp. 169–194 (1967).
    J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
    Loup Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967)
    B. Quentrec and C. Brot, "New Method for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, Vol.13, pp.430-432(1973).
    E. Lilleodden, "Microcompression study of Mg (0001) single crystal", Scripta Mater, 62, pp. 532–535 (2010).
    Q. Sun, Q. Guo, X. Yao, L. Xiao, J.R. Greer, J. Sun, "Size effects in strength and plasticity of single-crystalline titanium micropillars with prismatic slip orientation", Scripta Mater, 65, p. 473 (2011).
    Junqiang Ren, Qiaoyan Sun, Lin Xiao, , Xiangdong Ding, Jun Sun, " Size-dependent of compression yield strength and deformation mechanism in titanium single-crystal nanopillars orientated [0001] and [112 ̅0]", Materials Science and Engineering: A Volume 615, 6 October 2014, Pages 22–28
    J. E. Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
    J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
    Philip M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Phtsical Review, Vol.34, pp.57-64(1929).
    Murray S. Daw and M. I. Baskes, "Semiempirical Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals", Physical Review Letters, Vol.50, No.17, pp.1285-1301(1983).
    Murray S. Daw and M. I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals", Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
    V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and Structural Properties of FCC Transition Metals Using A Simple Tight-Binding Model" , Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, Vol.59, pp.321-336(1989).
    C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    J. M. Haile, Molecular Dynamics Simulation: Elementrary Methods(A Wiley-Interscience Publication), John Wiley & Sons, Inc, USA, (1992).
    R. Calusius, "On a Mechanical Theory Applicable to Heat" , Philosophical Magazine, Vol.40, pp.122-127(1870).
    Z. S. Basinski, M. S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice" , Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
    D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model" , Philosophical Magazine A, Vol.44, pp.847-866(1981).
    N. Miyazaki and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
    Y. C. Lin and D. J. Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method" , Molecular Simulation, Vol.33, pp. 979-988(2007).
    T. Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)" , JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
    Cynthia L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation", Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
    F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol. 48, No. 1, pp. 22-33(1993).

    QR CODE