簡易檢索 / 詳目顯示

研究生: 翁維謙
Wei-Qian Weng
論文名稱: 層狀過渡金屬硫化物Mo1-xWxS2之光電導特性研究
Study of photoconductive characteristics of Mo1-xWxS2
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
許宏彬
Hung-Pin Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 過渡金屬硫化物二硫化鉬鎢光電導
外文關鍵詞: TMD, transition metal dichalcogenide, Mo1-xWxS2, photoconduction
相關次數: 點閱:280下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要研究層狀過渡金屬硫化物Mo1-xWxS2 之光電導特性,利用化學氣相傳導法合成含不同比例(x = 0-1, Δx = 0.1)之Mo1-xWxS2,並分別以拉曼光譜儀、X光能量散佈光譜儀以及X光光電子能譜儀做定性與定量的分析,結果顯示Mo1-xWxS2 之組成比例可以有效地利用莫爾數比計算初始原料的配重來調整。霍爾效應量測結果顯示x比例越高則會形成n摻雜,提高載子濃度;而遷移率則因雜質散射效應的影響而降低,使得電導率隨x 比例變化。我們將Mo1-xWxS2 製作成金屬-半導體-金屬光電導元件,進行雷射光波長為405、532、632.8 及808 nm的光電流量測。不同波長雷射光因其光子能量與吸光度之差異,使得短波長雷射光照射之光響應最好。另外,由於不同x 比例影響Mo1-xWxS2 本身之電導率與吸光度,並且產生了能隙彎曲效應(Bowing effect),使得Mo0.6W0.4S2 光電導特性最佳,Mo0.3W0.7S2 光電導特性最差。除此之外,當x比例為0.7-1 時,材料特性轉為由WS2 主導,儘管WS2 之吸光度較小且能隙較大使其不利於光電流的產生,但由於其高電導率與較長載子生命週期等性質仍使得其光電導特性優良。


    In this thesis, we investigated the photoconductive characteristics of the transition metal dichalcogenide Mo1-xWxS2 synthesized by chemical vapor transport method with different proportion of x (x = 0-1, Δx = 0.1). Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were used to analyze the qualitative and quantitative characteristics of Mo1-xWxS2. The results showed that the composition proportion of Mo1-xWxS2 can be tunable effectively by calculating the mole number ratio of the starting materials. The result of Hall effect measurement represented that the concentration of carrier was increased with increasing x. However, the mobility was decreased with increasing x because of the impurity scattering effect, which makes the conductivity of Mo1-xWxS2 varied with the proportion of x. We also made the Mo1-xWxS2 into metal-semiconductor-metal photoconductive detectors and then processed the measurement of photocurrent under different wavelength of laser sources, which were 405, 532, 632.8 and 808 nm. Since different wavelength of laser sources have different phonon energies and absorbances, the shorter wavelength presents better photoresponse. Moreover, the proportion of x influenced the conductivity and absorbance of Mo1-xWxS2 and induced the energy gap bowing effect, making the Mo0.6W0.4S2 had the best photoconductive characteristic and the Mo0.3W0.7S2 had the worst photoconductive characteristic. Besides, the material characteristics of the proportion of x between 0.8 and 1 were controlled by WS2. Although the WS2 had smaller absorbance and the higher energy gap, which were unfavorable to generate photocurrent, the excellent electrical properties of WS2 resulted in good photoconductive charac

    第一章 緒論 1.1二維半導體材料 1.2過渡金屬硫化物 1.2.1二硫化鉬 1.2.2二硫化鎢 1.2.3 Mo1-xWxS2 1.2.4合成與製備 1.3光電導 1.3.1光電導機制 1.3.1.1光電效應 1.3.1.2光電導效應 1.3.1.3光伏效應 1.3.1.4光熱電效應 1.3.2光電導率- 1.3.3光響應度與量子效率 1.3.4 吸光度 1.3.5 能隙彎曲效應 1.4 研究背景及動機 1.4.1 Mo1-xWxS2光電導特性 第二章 實驗方法與設備 2.1實驗流程圖 2.2晶體成長 2.2.1晶體成長設備 2.2.1.1真空系統 2.2.1.2晶體成長反應系統 2.2.2 Mo1-xWxS2晶體成長 2.3樣品製作與量測 2.4分析量測儀器 2.4.1拉曼光譜儀 2.4.2 掃描式電子顯微鏡 2.4.3 X光能量散佈光譜儀 2.4.4 X光光電子能譜儀 2.4.5半導體特性量測系統 第三章 結果與討論 3.1 Mo1-xWxS2 3.1.1 拉曼光譜圖 3.1.2 X光能量散佈光譜圖 3.1.3 X光光電子能譜圖 3.2 光電導特性量測 3.2.1 霍爾效應量測 3.2.2 光電流量測 3.2.3 光電導率 3.2.4 歸一化光響應度 3.3 光電導特性分析 3.3.1 M-S-M光電導元件架構 3.3.2 入射光波長與光響應度 3.3.2.1 光子能量 3.3.2.2 吸光度 3.3.3 摻雜濃度與光響應度 3.3.3.1 吸光度 3.3.3.2 能隙彎曲效應 3.3.3.3 電導率 第四章 結論 參考文獻

    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D, Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [2]K. S. Novoselov, "Nobel lecture: Graphene: Materials in the flatland," Rev. Mod. Phys., vol. 83, pp. 837-849, 2011.
    [3]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., vol. 146, pp. 351-355, 2008.
    [4]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, "Supercapacitor devices based on graphene materials," J. Phys. Chem. C, vol. 113, pp. 13103-13107, 2009.
    [5]D. W. Zhang, X. D. Li, H. B, Li, S. Chen, Z. Sun, X. J. Yin, and S. M. Huang, "Graphene-based counter electrode for dye-sensitized solar cells," Carbon, vol. 49, pp. 5382-5388, 2011.
    [6]S. Basu and P. Bhattacharyya, "Recent developments on graphene and graphene oxide based solid state gas sensor," Sens. Actuator B, vol. 173, pp. 1-21, 2012.
    [7]Z. Sun and H. Chang, "Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology," ACS Nano, vol. 8 pp. 4133-4156, 2014.
    [8]M. Chhowalla, Z. Liu, and H. Zhang, "Two-dimensional transition metal dichalcogenide (TMD) nanosheets," Chem. Soc. Rev., vol. 44, pp. 2584-2586, 2015.
    [9]W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Progress Surf. Sci., vol. 29, pp.1-167, 1988.
    [10]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, " Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 669-712, 2012.
    [11]Z. Wang, Q, Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, "Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries," Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014.
    [12]H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets," Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014.
    [13]N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim, and C. J. Lee, "Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation," ACS Nano, vol. 8, pp. 6902-6910, 2014.
    [14]K. Å. V. Anderson, S. E. Kaelsson, and N. Ohmae, "Morphologies of rf sputter-deposited solid lubricants," Vacuum, vol. 27, pp. 213-412, 1997.
    [15]C. Feng, L. Huang, Z. Guo, and H. Liu, "Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application," Electrochem. Commun., vol. 9, pp.119-122, 2007.
    [16]G. Prasad, and O. N. Srivastava, '"The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell," J. Phys. D: Appl. Phys., vol. 21, pp.1028-1030, 1988.
    [17]K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: A new direct-gap semiconductor," Phys. Rev. Lett., vol. 105, pp. 136805-1-136805-4, 2010.
    [18]A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., vol. 10, pp. 1271-1275, 2010.
    [19]E. S. Kadantsev and P. Hawrylak, "Electronic structure of a single MoS2 monolayer," Solid State Commun., vol. 152, pp. 909-913, 2012.
    [20]X. Chia, A. Ambrosi, Z. Sofer, J. Luxa, and M. Pumera, "Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment," ACS Nano, vol. 9, pp. 5164-5179, 2015.
    [21]A. Winchester, S. Ghosh, S. Feng, A. L. Elias, T. Mallouk, M. Terrones, and S. Talapatra, "Electrochemical characterization of liquid phase exfoliated two dimensional layers of molybdenum disulfide," ACS Appl. Mater. Interfaces, vol. 6, pp. 2125-2130, 2014.
    [22]C. Feng, J. Ma, H. Li, R. Zheng, Z. Guo, and H. Liu, "Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications," Mater. Res. Bull., vol. 44, pp. 1811-1815, 2009.
    [23]H. Huang, X. Feng, C. Du, and W. Song, "High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity," Chem. Commun., vol. 51, pp. 7903-7906, 2015.
    [24]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotech., vol. 6, pp. 147-150, 2011.
    [25]H. S. Lee, S. W. Min, Y. G. Chang,M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, "MoS2 nanosheet phototransistors with thickness-modulated optical energy gap," Nano Lett., vol. 12, pp. 3695-3700, 2012.
    [26]M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Muller, "Mechanisms of photoconductivity in atomically thin MoS2," Nano Lett., vol. 14, pp. 6165-6170, 2014.
    [27]W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, "High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared.," Adv. Mater., vol. 24, pp. 5832-5836, 2012.
    [28]W. J. Schutte, J. L. de Boer, and F. Jellinek, "Crystal structures of tungsten disulfide and diselenide," J. Solid State Chem., vol. 70, pp, 207-209, 1987.
    [29]A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrezm, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urias, H. Terrones, and M. Terrones, "Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers," ACS Nano, vol. 7, pp. 5235–5242, 2013.
    [30]D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis, "Electrical transport properties of single-layer WS2," ACS Nano, vol. 8, pp. 8174-8181, 2014.
    [31]W. S. Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. D. Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, and D. Jena, "Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior," Appl. Phys. Lett., vol. 101, pp. 013107-1-013107-4, 2012.
    [32]F. Withers, T. H. Bointon, D. C. Hudson, M. F. Craciun, S. Russo, "Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment," Sci. Rep., vol. 4, pp. 4967-1-4967-5, 2014.
    [33]T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, "Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics," Nat. Nanotechnol., vol. 8, pp. 100-103, 2012.
    [34]N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, "Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes," Sci. Rep., vol. 4, pp. 5209-1-5209-9, 2014.
    [35]N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, "Photosensor device based on few-layered WS2 films," Adv. Found. Mater., vol. 23, pp. 5511-5517, 2013.
    [36]S. K. Srivastava, T. K. Mandal, and B. K. Samantaray, "Studies on layer disorder, microstructural parameters and other properties of tungsten-substituted molybdenum disulfide, Mo1-xWxS2 ¬(0 ≤ x ≤ 1)," Synth. Met., vol. 90, pp. 135-142, 1997.
    [37]H. Liu, K. K. Antwi, S. Chua, and D. Chi, "Vapor-phase growth and characterization of Mo(1-x)W(x)S2 ¬(0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates," Nanoscale, vol. 6, pp. 624-629, 2014.
    [38]C. Thomazeau, C. Geantet, M. Lacroix, V. Harle, S. Benazeth, C. Marhic, and M. Danot, "Two cation disulfide layers in the WxMo(1-x)S2 lamellar solid solution," J. Solid State Chem., vol. 160, pp. 147-155, 2001.
    [39]C. Thomazeau, C. Geantet, M. Lacroix, M. Danot, V. Harle, and P. Raybaud, Appl. Catal. A: Gen., vol. 322, pp. 92-97, 2007.
    [40]M. Nath, K. Mukhopadhyay, and C. N. R. Rao, "Mo1-xWxS2 nanotubes and related structure," Chem. Phys. Lett., vol. 352, pp. 163-168, 2002.
    [41]C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Temperature dependence of energies and broadening parameters excitons of Mo1-xWxS2 single crystal," J. Phys. Condens. Matter, vol. 10, pp. 9317-9328, 1998.
    [42]D. O. Dumcenco, K. Y. Chen, Y. P. Wang. Y. S. Huang, and K. K. Tiong, "Raman study of 2H-Mo1-xWxS2 layered mixed crystals," J. Alloys Compd., vol. 506, pp. 940-943, 2010.
    [43]R. Vaidya, M. Daves, S. S. Patel, S. G. Patel, and A. R. Jani, "Growth of molybdenum disulphide using iodine as transport material," Pramana, vol. 63, pp. 611-616, 2004.
    [44]M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, "Chemical vapor transport reactions – A historical review," Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013.
    [45]A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, "Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides," Cryst. Growth Des., vol. 13, pp.4453-4459, 2013.
    [46]A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, "A comparison of the wear life of as-deposited and ion-irradiated WS2 coating," Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
    [47]M. Genut, L. Margulis, G. Hodes, and R. Tenne, "Preparation and microstructure WS2 thin films," Thin Solid Films, vol. 217, pp. 91-97, 1992.
    [48]A. Jäger-Waldau, M. Ch. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, "WS2 thin films prepared by sulphurization," Appl. Surf. Sci. vol.70-71, pp. 731-736, 1993.
    [49]C. J. Carmalt, I. P. Parkin, and E. S. Peters, "Atmospheric pressure chemical vapour deposition of WS2 thin film on glass," Polyhedron, vol. 22, pp. 1499-1505, 2003.
    [50]Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotech. vol. 7, pp. 699-712, 2012.
    [51]M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Photocurrent generation with two-dimensional van der Waals semiconductors," Chem. Soc. Rev., vol. 44, pp. 3691-3718, 2015.
    [52]W. Zhu, T. Low, Y. H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," Nature Commun., vol. 5, pp. 3087-1-3087-8, 2014.
    [53]M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, "Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions," Sci. Rep., vol. 3, pp. 1634-1-1634-5, 2012.
    [54]Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S. L. Zhang, R. Liu, and Z. J. Qiu, "Photothermoelectric and photovoltaic effects both present in MoS2," Sci. Rep., vol. 5, pp.7938-1-7938-7, 2015.
    [55]M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, "Large and tunable photothermoelectric effect in single-layer MoS2," Nano Lett., vol. 13, pp. 358-363, 2013.
    [56]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, "ZnO nanowire UV photodetector with high internal gain," Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [57]Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, "Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys," ACS Nano, vol. 7, pp. 4610-4616, 2013.
    [58]Z. Yin, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012.
    [59]H. M. Li, D. Y. Lee, M. S. Choi, D. Qu, X. Liu, C. H. Ra, and W. J. Yoo, "Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors," Sci. Rep., vol. 4, pp. 4041-1-4041-7, 2014.
    [60]D. S. Tsai, D. H. Lien, M. L. Tsai, S. H. Su, K. M. Chen, J. J. Ke, Y. C. Yu, L. J. Li, and J. H. He, "Trilayered MoS2 metal-semiconductor-metal photodetectors: Photogain and radiation resistance," IEEE J. Sel. Top. Quant. Electron., vol. 20, pp. 3800206-1-3800206-6, 2014.
    [61]D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, L. J. Li, and J. H. He, "Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments," ACS Nano, vol. 7, pp. 3905-3911, 2013.
    [62]A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, "Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy," Sci. Rep., vol. 4, pp. 6608-1-6608-7, 2014.
    [63]L. Guardia, J. I. Paredes, R. Rozada, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, "Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants," RSC Adv., vol. 4, pp. 14115-14127, 2014.
    [64]S. Ghatak, A. N .Pal, and A. Ghosh, "Nature of electronic state in atomically thin MoS2 field-effect transistors," ACS Nano, vol. 5, pp. 7707-7712, 2011.
    [65]S. Ghatak, A. Ghosh, "Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor," Appl. Phys. Lett., vol. 103, pp. 122103-1-122103-4, 2013.
    [66]S. Y. Wang, T. S. Ko, C. C. Huang, D. Y. Lin, and Y. S. Huang. "Optical and electrical properties of MoS2 and Fe-doped MoS2," Jpn. J. Appl. Phys., vol. 53, pp. 04EH07-1-04EH07-5, 2014.
    [67]M. R. Laskar, D. N. Nath, L. Ma, E. W. Lee II, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A. Roldan, J. C. Idrobo, S. T. Pantelides, S. J. Pennycook, R. C. Myers, Y. Wu, and S. Rajan, "p-type doping of MoS2 thin films using Nb," Appl. Phys. Lett., vol. 104, pp. 092104-1-092104-4, 2014.
    [68]N. Ma, and D. Jena, "Charges scattering and mobility in atomically thin semiconductors," Phys. Rev. X, vol. 4, pp. 011043-1-011043-9, 2014.
    [69]K. K. Kam, "Electrical properties of WSe2, WS2, MoSe2, MoS2, and their use as photoanodes in a semiconductor liquid junction solar cell," Retrospective Theses and Dissertations, pp. 8356-8475, 1982.

    無法下載圖示 全文公開日期 2020/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE