簡易檢索 / 詳目顯示

研究生: 王友利
You-Li Wang
論文名稱: 層狀過渡金屬硫屬化合物W(S1-xSex)2之晶體成長及光電導特性研究
Study of crystal growth and photoconductive characteristics of W(S1-xSex)2
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 邱博文
Po-Wen Chiu
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 化學氣相傳輸二硫化鎢二硫化硒三元化合物光電導特性量測
相關次數: 點閱:303下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要目的為研究層狀過渡金屬硫化物W(S1-xSex)2的基本特性,並將其製作為光感測元件. 利用化學氣相傳導法合成含不同比例之W(S1-xSex)2, 並分別以拉曼光譜儀、X光能量散佈光譜儀進行定性與半定量的分析,結果顯示W(S1-xSex)2可以有效地利用莫爾數比計算控制其比例。首先我們將W(S1-xSex)2製作成金屬-半導體-金屬光感測元件,並進行電性量測, 在電導率量測中可以得到摻雜後改變其電導率的主要因子為載子濃度, 之後進行雷射光波長為405、532、632.8及808 nm的光電流量測。不同波長雷射光的光子能量所造成的光電流與樣品的本身的吸光度和表面吸收的效率有關, 這使得長波長所照射後的光響應為最佳, 而不同摻雜比例之間的歸一化光響應度會因為載子遷移率, 載子活期和量子轉換效率有直接關係, 而從此實驗中可以得到主導歸一化光響應度的主要因素為載子活期. 最後利用在真空及大氣環境下的光電流做比較, 可以發現到氧敏化機制的存在, 由於利用W(S1-xSex)2所製作成的光感測器屬於塊材結構, 因此氧敏化機制所造成的影響不大.


    In this thesis, we investigated the photoconductive characteristics of the transition metal dichalcogenide W(S1-xSex)¬2 which is synthesized by chemical vapor transport method with different proportion. The results of EDS showed that the composition of W(S1-xSex)2 can be tunable effectively by calculating the mole number ratio of the starting material. Under controlling the component of W(S1-xSex)2, in the Raman spectra, the peak (247 cm-1) and the intensity of WSe2 gradually declined and shifted to the two peaks (A1g and E12g) of WS2, which are located at 355 cm-1 and 419 cm-1, respectively. The results showed that the composition proportion of W(S1-xSex)¬2 can be tunable effectively by calculating the mole number ratio of the starting materials. From the conductivities measurement, the value of conductivities was guided by the carrier concentration, impurities scattering and alloy scattering. We also made the W(S1-xSex)¬2 into metal-semiconductor-metal photoconductive detectors and then processed the measurement of photocurrent under different wavelength of laser sources, which were 405, 532, 632.8 and 808 nm. Because of the higher surface recombination rate for the shorter wavelength, the higher wavelength presents better photoresponse. Although the proportion of x influenced the conductivity, mobility, quantum efficiency and carrier lifetime of W(S1-xSex)¬2, The photoresponse was guided by the carrier lifetime. At last, the environment-dependent photocurrent indicated the photoconductive detectors of W(S1-xSex)¬2 followed the oxygen-sensitized photoconduction mechanism, but the photocurrent was less affected by the oxygen-sensitized photoconduction mechanism.

    中文摘要---------------------------------------------------------------- I 英文摘要---------------------------------------------------------------- II 致謝-------------------------------------------------------------------- III 目錄-------------------------------------------------------------------- IV 圖索引------------------------------------------------------------------ VII 表索引------------------------------------------------------------------ IX 第一章 緒論-------------------------------------------------------------- 1 1.1 二維半導體材料----------------------------------------------------- 1 1.2 過渡金屬硫屬化合物-------------------------------------------------- 2 1.2.1 二硒化鎢及二硫化鎢---------------------------------------------- 5 1.2.2 W(S1-xSex)2-------------------------------------------------- 6 1.2.3 合成與製備----------------------------------------------------- 6 1.3 光電導------------------------------------------------------------ 7 1.3.1.1 光電效應-------------------------------------------------- 8 1.3.1.2 光電導效應------------------------------------------------ 9 1.3.1.3 氧敏化機制------------------------------------------------ 10 1.3.2 光響應度------------------------------------------------------ 11 1.3.3 歸一化光電流增益----------------------------------------------- 11 1.3.4 量子轉換效率--------------------------------------------------- 12 1.3.5 載子活期------------------------------------------------------- 13 1.4 研究背景及動機------------------------------------------------------ 14 第二章 晶體成長及實驗方式------------------------------------------------- 15 2.1 實驗流程圖--------------------------------------------------------- 15 2.2 晶體成長方法簡介--------------------------------------------------- 16 2.3 晶體成長設備介紹--------------------------------------------------- 18 2.3.1 真空系統------------------------------------------------------ 18 2.3.2 長晶反應系統--------------------------------------------------- 19 2.4 單晶成長---------------------------------------------------------- 20 2.5 樣本製作與量測------------------------------------------ ---------- 22 2.6 分析量測儀器------------------------------------------------------- 23 2.6.1 掃描式電子顯微鏡----------------------------------------------- 23 2.6.2 穿透式電子顯微鏡----------------------------------------------- 24 2.6.3 拉曼光譜儀----------------------------------------------------- 25 2.6.4 X光能量散佈光譜儀---------------------------------------------- 26 2.6.5 半導體電導量測系統---------------------------------------------- 27 2.6.6 半導體光電導特性量測系統---------------------------------------- 28 2.6.7 真空及大氣環境下光電特性量測系統--------------------------------- 29 第三章 結果與討論-------------------------------------------------------- 30 3.1 W(S1-xSex)2的形貌以及特性研究--------------------------------------- 30 3.1.1 掃瞄式電子顯微鏡影像圖------------------------------------------ 30 3.1.2 穿透式電子顯微鏡影像圖------------------------------------------ 31 3.1.3 拉曼光譜圖----------------------------------------------------- 32 3.1.4 X光能量散佈光譜圖-----------------------------------------------35 3.2 電導率特性量測及分析------------------------------------------------36 3.3 光電流量測---------------------------------------------------------39 3.4 歸一化光響應度------------------------------------------------------45 3.4.1 入射光波長與光響應度--------------------------------------------48 3.4.2 表面效應與光響應度分析------------------------------------------49 3.4.3 W(S1-xSex)2光響應度分析----------------------------------------50 3.5 大氣與真空環境下W(S1-xSex)2 光電導量測-------------------------------51 3.6 大氣與真空環境下W(S1-xSex)2光電導特性分析----------------------------53 第四章 結論-------------------------------------------------------------- 54 參考文獻---------------------------------------------------------------- 56

    [1] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene, ”Solid State Commun.,” vol. 146, pp. 351-355, 2008.
    [2] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, pp. 611-622, 2010.
    [3] F. Schwierz, “Graphene transistors,” Nature Nanotechnology, vol. 5, pp. 487-496, 2010.
    [4] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009.
    [5] V. M. Pereira and A. H. Castro Neto, “Strain Engineering of Graphene's Electronic Structure,” Phys. Rev. Lett., vol. 103, 2009.
    [6] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties,” Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [7] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater., vol. 22, pp. 3906-3924, 2010.
    [8] R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride,” Phys. Rev., vol. 146, pp. 543-547, 1966.
    [9] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, pp. 1102-1120, 2014.
    [10] Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, “Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures,” Nano Lett., vol. 15, pp. 6135-6141, 2015.
    [11] L. F. Mattheiss, “Band structures of transition-metal-dichalcogenide layer compounds,” Phys. Rev. B, vol. 8, pp. 3719-3740, 1973.
    [12] W. Jaegermann and H. Tributsch, “Interfacial properties of semiconducting transition metal chalcogenides,” Progress Surf. Sci., vol. 29, pp. 1-167, 1988.
    [13] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotech., vol. 7, pp. 699-712, 2012.
    [14] Z. Wang, Q. Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, “Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries,” Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014.
    [15] H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets,” Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014.
    [16] N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim, and C. J. Lee, “Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation,” ACS Nano, vol. 8, pp. 6902-6910, 2014.
    [17] G. Prasad and O. N. Srivastava, “The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell,” J. Phys. D: Appl. Phys., vol. 21, pp. 1028-1030, 1988.
    [18] S. Min and G. Lu, “Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene,” J. Phys. Chem. C, vol. 116, pp. 25415-25424, 2012.
    [19] S. Bertolazzi, D. Krasnozhon, and A. Kis, “Nonvolatile memory cells based on MoS2/graphene heterostructures,” ACS Nano, vol. 7, pp. 3246-3252, 2013.
    [20] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010.
    [21] X. Chia, A. Ambrosi, Z. Sofer, J. Luxa, and M. Pumera, “Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment,” ACS Nano, vol. 9, pp. 5164-5179, 2015.
    [22] A. Winchester, S. Ghosh, S. Feng, A. L. Elias, T. Mallouk, M. Terrones, and S. Talapatra, “Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide,” ACS Appl. Mater. Interfaces, vol. 6, pp. 2125-2130, 2014.
    [23] T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, “Lithium ion battery applications of molybdenum disulfide MoS2 nanocomposites,” Energy Environ. Sci., vol. 7, pp. 209-231, 2014.
    [24] H. Huang, X. Feng, C. Du, and W. Song, “High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity,” Chem. Commun., vol. 51, pp. 7903-7906, 2015.
    [25] A. L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutiérrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. López-Urías, H. Terrones, and M. Terrones, “Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers,” ACS Nano, vol. 7, pp. 5235-5242, 2013.
    [26] D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2,” ACS Nano, vol. 8, pp. 8174-8181, 2014.
    [27] W. Sik Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. Doo Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, and D. Jena, “Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior,” Appl. Phys. Lett., vol. 101, 2012.
    [28] N. Huo, S. Yang, Z. Wei, S. S. Li, J. B. Xia, and J. Li, “Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes,” Sci. Rep., vol. 4, 2014.
    [29] N. Perea-Lõpez, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. Lõpez-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Func. Mater., vol. 23, pp. 5511-5517, 2013.
    [30] J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, and B. Xiang, “Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications,” Nanoscale, vol. 7, pp. 4193-4198, 2015.
    [31] B. Liu, Y. Ma, A. Zhang, L. Chen, A. N. Abbas, Y. Liu, C. Shen, H. Wan, and C. Zhou, “High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-Plane Heterojunctions,” ACS Nano, vol. 10, pp. 5153-5160, 2016.
    [32] P. M. Campbell, A. Tarasov, C. A. Joiner, M. Y. Tsai, G. Pavlidis, S. Graham, W. J. Ready, and E. M. Vogel, “Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2,” Nanoscale, vol. 8, pp. 2268-2276, 2016.
    [33] Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology, vol. 27, 2016.
    [34] X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou, U. Halim, H. Li, X. Wu, Y. Wang, J. Jiang, A. Pan, Y. Huang, R. Yu, and X. Duan, “Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties,” Nano Lett., vol. 16, pp. 264-269, 2016.
    [35] A. Jäger-Waldau, M. C. Lux-Steiner, G. Jäger-Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci., vol. 70-71, pp. 731-736, 1993.
    [36] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings,” Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
    [37] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana, vol. 63, pp. 611-616, 2004.
    [38] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, “Chemical vapor transport reactions - A historical review,” Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013.
    [39] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides,” Cryst. Growth Des., vol. 13, pp. 4453-4459, 2013.
    [40] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, “Mechanisms of photoconductivity in atomically thin MoS2,” Nano Lett., vol. 14, pp. 6165-6170, 2014.
    [41] W. Zhu, T. Low, Y. H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, “Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition,” Nature Commun., vol. 5, pp. 3087-1-3087-8, 2014.
    [42] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, and C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires,” Nanotechnology, vol. 22, pp. 425702, 2011.
    [43] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductors,” Chem. Soc. Rev, vol. 44, pp. 3691-3718, 2015.
    [44] H. M. W. Khalil, M. F. Khan, J. Eom, and H. Noh, “Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance,” ACS Appl. Mater. Interfaces, vol. 7, pp. 23589-23596, 2015.
    [45] A. S. Pawbake, R. G. Waykar, D. J. Late, and S. R. Jadkar, “Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications,” ACS Appl. Mater. Interfaces, vol. 8, pp. 3359-3365, 2016.
    [46] M. Sigiro, Y. S. Huang, and C. H. Ho, “Optical characterization of undoped and Au-doped MoS2 single crystals,” Appl. Mech. Mater., vol. 627, pp. 50-53, 2014
    [47] Y. C. Jian, D. Y. Lin, J. S. Wu, and Y. S. Huang, “Optical and electrical properties of Au- and Ag-doped ReSe2,” Jpn. J. Appl. Phys., vol. 52, pp. 04CH06, 2013.
    [48] X. Zhang, X. F. Qiao, W. Shi, J. B. Wu, D. S. Jiang, and P. H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev., vol. 44, pp. 2757-2785, 2015.
    [49] H. Terrones, E. Del Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. Nguyen, A. L. Elias, T. E. Mallouk, L. Balicas, M. A. Pimenta, and M. Terrones, “New first order Raman-active modes in few layered transition metal dichalcogenides,” Sci. Rep., vol. 4, pp. 4215, 2014.
    [50] H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, “Mechanical exfoliation and characterization of single and few-layer nanosheets of WSe2, TaS2, and TaSe2,” Small, vol. 9, pp. 1974-1981, 2013.
    [51] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett., vol. 13, pp. 3447-3454, 2013.
    [52] C. Sourisseau, F. Cruege, M. Fouassier, and M. Alba, “Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2,” Chem. Phys., vol. 150, pp. 281-293, 1991.
    [53] R. S. Chen, C. C. Tang, W. C. Shen, and Y. S. Huang, “Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers,” Nanotechnology, vol. 25, pp. 415706, 2014.
    [54] M. R. Laskar, D. N. Nath, L. Ma, E. W. Lee II, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A. Roldan, J. C. Idrobo, S. T. Pantelides, S. J. Pennycook, R. C. Myers, Y. Wu, and S. Rajan, “P-type doping of MoS2 thin films using Nb,” Appl. Phy. Lett., vol. 104, pp. 092104, 2014.
    [55] S. Y. Wang, T. S. Ko, C. C. Huang, D. Y. Lin, and Y. S. Huang, “Optical and electrical properties of MoS2 and Fe-doped MoS2,” Jpn. J. Appl. Phys., vol. 53, pp. 04EH07, 2014.
    [56] N. Ma and D. Jena, “Charge Scattering and Mobility in Atomically Thin Semiconductors,” Phys. Rev. X, vol. 4, pp. 011043-1-011043-9, 2014.
    [57] S. Ghatak and A. Ghosh, “Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor,” Appl. Phys. Lett., vol. 103, pp.122103, 2013.
    [58] J. Y. Kim, S. M. Choi, W. S. Seo, and W. S. Cho, “Thermal and electronic properties of exfoliated metal chalcogenides,” Bull. Korean Chem. Soc., vol. 31, pp. 3225-3227, 2010.
    [59] Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano, vol. 7, pp. 4610-4616, 2013.
    [60] N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. L. Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas, and M. Terrones, “CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage,” 2D Materials, vol. 1, pp. 011004, 2014.
    [61] H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. Huang, “Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals,” ACS Nano, vol. 7, pp. 1072-1080, 2013.
    [62] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys Rev. Let.t, vol. 105, pp. 136805, 2010.
    [63] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Terrones, “Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets,” Acc. Chem. Res., vol. 48, pp. 56-64, 2015.
    [64] L. Sun, J. X. Sun, C. H. Xiong, and X. H. Shi, “Trap-assisted recombination in disordered organic semiconductors extended by considering density dependent mobility,” Sol. Energy, vol. 135, pp. 308-316, 2016.

    無法下載圖示 全文公開日期 2021/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE