簡易檢索 / 詳目顯示

研究生: 楊家文
Chia-Wen Yang
論文名稱: 二硫化鈦奈米晶體之電傳輸特性研究
Electronic Transport Properties in TiS2 Nanocrystals
指導教授: 趙良君
Liang-Chiun Chao
陳瑞山
Ruei-San Chen
口試委員: 陳瑞山
Ruei-San Chen
趙良君
Liang-Chiun Chao
田禮嘉
Li-Chia Tien
謝雅萍
Ya-Ping Hsieh
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 二硫化鈦光電導半導體
外文關鍵詞: TiS2, titanium disulfide, solid state method
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 第二章 樣品介紹 2 第三章 實驗方法 3 3.1 二硫化鈦之形貌與結構特性檢測 3 3.1.1 原子力學顯微鏡 (atomic force microscope, AFM) 3 3.1.2 拉曼散射光譜儀 (Raman scattering spectroscope) 6 3.1.3 X光繞射儀 (X-ray diffractometer, XRD) 8 3.1.4 掃描式電子顯微鏡 (scanning electron microscope, SEM) 11 3.1.5 雙束型聚焦式離子束系統 (dual-beam focused-ion beam, FIB) 13 3.1.6 X射線光電子能譜術 (X-ray photoelectron spectroscopy, XPS) 16 3.2 二硫化鈦元件製作 18 3.2.1 元件基板製作 18 3.2.2 二硫化鈦奈米晶體分散 19 3.2.3 奈米結構電極製作 21 3.3 奈米材料之暗電導特性研究 24 3.3.1 電流對電壓曲線量測 (current-voltage measurement) 26 3.3.2 溫度變化之電性量測 (temperature-dependent measurement) 26 3.4 奈米材料之光電導特性研究 29 3.4.1 功率相依之光電導量測 (power-dependent photocurrent measurement) 30 3.4.2 環境變化之光電導量測 (ambience-dependent photocurrent measurement) 30 第四章 結果與討論 31 4.1 二硫化鈦晶體之形貌與結構分析 31 4.1.1 二硫化鈦奈米材料之表面形貌與結構分析 31 4.1.2 晶體結構 33 4.2 二硫化鈦元件尺寸量測 39 4.2.1 二硫化鈦奈米結構SEM量測 39 4.2.2 二硫化鈦奈米結構AFM厚度量測 42 4.3 二硫化鈦暗電導分析 44 4.3.1 二硫化鈦奈米晶體電導率之計算 44 4.3.2 二硫化鈦溫度變化之暗電導量測 48 4.4 二硫化鈦光電導量測 51 4.4.1 二硫化鈦奈米晶體之功率相依光電導 51 4.4.2 二硫化鈦奈米晶體不同雷射波長之光電導反應 53 4.4.3 二硫化鈦光電導效率 56 4.4.4 環境變化光電導量測 63 第五章 結論 69 參考文獻 69

    [1] J. Lu, F. Lian, Y. Zhang, N. Chen, Y. Li, F. Ding, X. Liu, “Sulfide cluster vacancies inducing an electrochemical reversibility improvement of titanium disulfide electrode material”, Journal of
    Materials Chemistry A, Vol. 8, pp. 6532–6538, (2020).
    [2] D. L. Greenaway, R. Nitsche, “Preparation and Optical Properties of Group IV−VI2 Chalcogenides Having the CdI2 Structure”, J. Phys. Chem. Solids, Vol. 26(9), pp. 1445-1458, (1965).
    [3] A. H. Thompson, K. R. Pisharody, and R. F. Koehler, “Experimental Study of Solid Solutions TixTa1-XS2”, Phys. Rev. Lett, Vol. 29(3), pp. 163−166, (1972).
    [4] R. H. Friend, D. Jirromet, W. Y. Liang, J. C. Mikkelseng and A. D. Yoffe, “Semimetallic character of TiSe2 and semiconductor character of TiS2 under pressure”, Journal of Physics C: Solid State Physics, Vol. 10(24), L705–L708, (1977).
    [5] C. H. Chen, W. Fabian, F. C. Brown, K. C. Woo, B. Davies, B. DeLong, and A. H. Thompson, “Angle-Resolved Photoemission Studies of the Band Structure of TiSe2 and TiS2”, Phys. Rev. B, Vol. 21(2), pp. 615−624, (1979).
    [6] C. Umrigar, D. E. Ellis, D. S. Wang, H. Krakauer, and M. Posternak, “Band Structure, Intercalation, and Interlayer Interactions of Transition-Metal Dichalcogenides: TiS2 and LiTiS2”, Phys. Rev. B, Vol. 26(9), pp. 4935−4950, (1982).
    [7] K. Chen, M. Song, Y. Y. Sun, H. Xu, D. C. Qi, Z. Su, X Gao, Q. Xu, J. Hu, J. Zhu, R. Zhang, J. Wang, L. Zhang, L. Cao, Y. Han, and Y. Xiong, “Defects controlled doping and electrical transport in TiS2 single crystals”, Appl. Phys. Lett, Vol. 116, pp.121901, (2020).
    [8] F. Braet, R. De Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells”, Journal of Microscopy, Vol. 186, pp. 84–87, (1997).
    [9] P. Carra, B. T. Thole, M. Altarelli, X. Wang, “X-ray circular dichroism and local magnetic fields”, Physical Review Letters, Vol. 70(5), pp. 694, (1993).
    [10] B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction,” Prentice Hall, New Jersey (2001).
    [11] A. Beiser, “Concepts Of Modern Physics”, McGraw-Hill Education (India) Pvt Limited (2003).
    [12] P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterization”, IOP Publishing, Bristol, (1994).
    [13] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development”, IEEE Trans. Electron. Packag. Manuf., Vol. 26, pp. 141–149, (2003).
    [14] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, J. Micromech. Microeng., Vol. 14, pp. R15–R34, (2004).
    [15] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, Vol. 1, pp. 924–939, (2005).
    [16] Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett., Vol. 91970, pp. 211102 (2010).
    [17] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires”, Nano Lett., Vol. 5, pp. 2029-2033 (2005).
    [18] 朱煜文, “二硫化鎢層狀半導體之電子結構與電傳輸特性”,國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
    [19] Donald A. Neamen, “Semiconductor Physics and Devices”, (2011).
    [20] C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu, J. P, Y. Guo, L. Peng, J. Zhao, J. Huang, J. Yang, Y. Xie, “Hydrogen-incorporated TiS2 Ultrathin Nanosheets with Ultrahigh Conductivity for Stamp-transferrable Electrodes”, J. Am. Chem. Soc., Vol. 135(13), pp. 5144–5151, (2013).
    [21] 彭子恩, “高導電度層狀硫屬化合物之晶體成長與特性研究”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
    [22] L. E. Conroy, K. C. Park, “Electrical properties of the Group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide”, Inorganic Chemistry, Vol. 7(3), pp. 459–463, (1968).
    [23] C. G. Hawkins and L. W. Brooks, “Controlling Sulfur Vacancies in TiS2−x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications”, ACS Appl. Nano Mater., Vol. 1, pp. 851−859, (2018).
    [24] P. Bhattacharya, “Semiconductor optoelectronic devices”, Prentice Hall, New Jersey, Vol. 8, pp. 346-351, (1997).
    [25] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J.Appl. Phys., Vol. 79, pp. 7433-7473, (1996).
    [26] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, “Ultahigh photocurrent gain in m-axial GaN nanowires”, Appl. Phys. Lett., Vol. 91, pp. 223106, (2007).
    [27] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition”, Nanoscale Res. Lett., Vol. 8, pp. 443, (2013).
    [28] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, J. R. Morante, “On the photoconduction properties of low 93 resistivity TiO2 nanotubes”, Nanotechnology, Vol. 21, pp. 445703, (2010).
    [29] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires”, Nanotechnology, Vol. 22(42), pp. 425702, (2011).
    [30] H. M. Huang, R. S. Chen, H. Y. Chen, T. W. Liu, C. C. Kuo, C. P. Chen, H. C. Hsu, L. C. Chen, K. H. Chen, Y. J. Yang, “Photoconductivity in single AlN nanowires by subband gap excitation”, Applied Physics Letters, Vol. 96(6), pp. 062104, (2010).

    無法下載圖示 全文公開日期 2026/08/05 (校內網路)
    全文公開日期 2026/08/05 (校外網路)
    全文公開日期 2026/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE