簡易檢索 / 詳目顯示

研究生: 李銘軒
Ming-Xuan Li
論文名稱: 使用互補式金氧半導體與印刷電路板整合之K頻段低雜訊主動天線及應用於第五代行動通訊之超寬頻砷化鎵功率放大器
K-band CMOS Low Noise Active Integrated Antenna Using PCB Processes and Ultra-Wide Band GaAs Power Amplifier for 5G Applications
指導教授: 馬自莊
Tzyh-Ghuang Ma
林坤佑
Kun-You Lin
口試委員: 馬自莊
Tzyh-Ghuang Ma
林坤佑
Kun-You Lin
蔡政翰
Jeng-Han Tsai
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 103
中文關鍵詞: 主動集成天線低雜訊放大器第五代行動通訊毫米波假型高電子遷移率電晶體超寬頻功率放大器
外文關鍵詞: Active integrated antenna, Low noise amplifier, 5G mobile communication, Millimeter-wave, pHEMT, Ultra wideband, Power amplifier
相關次數: 點閱:471下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要包含兩個主題,第一部份為天線整合K頻帶低雜訊放大器,K頻段在24-24.25 GHz是不需執照的,也因此成為汽車雷達的主流頻帶。在主動部分吾人提出兩種版本之低雜訊放大器,一個將放大器的輸入雜訊阻抗(Zopt)匹配至阻抗50歐姆附近,另一個則去除放大器的輸入匹配僅保留隔直電容(DC-blocking capacitor),透過晶片外匹配網路將天線的輸入阻抗設計至對應放大器的Zopt,而這兩種版本的電路有著相同的電晶體尺寸、偏壓以及集總元件值,唯一區別在於輸入匹配網路存在與否,以上兩種版本的晶片皆由台積電提供的0.18-μm互補式金氧半導體製程來實現,天線部分採用基板整合波導的開槽天線陣列,最後透過磅線將兩者合成主動天線。
    第二部分提出設計在毫米波頻帶之功率放大器,使用穩懋提供的0.15-μm GaAs pHEMT製程製作,在輸出負載匹配上,利用磁耦合共振架構(Magnetically coupled resonator)及多階匹配網路來擴展頻寬,最後透過on-wafer量測,24.7-39.6 GHz皆大於14.9 dB,飽和輸出功率(Psat)在24.5-38 GHz都有大於23.8 dBm,Psat 1dB頻寬達43.2%,功率附加效率最高可以達32.8%,雖與模擬相比頻寬有所縮減,但仍涵蓋多個毫米波頻段,晶片面積為2*1 mm2。
    本論文將詳盡介紹兩個主題的設計流程、電路架構,以及模擬與量測的結果比較,並加以探討分析兩者誤差可能之原因所在。


    This thesis includes two main researches.The first part is the active antenna integrated with K-band low noise amplifier, K-band frequency from 24 GHz to 24.25GHz is an unlicensed band, It has become the mainstream frequency band for automotive radars. In the active part, two versions of low-noise amplifiers are proposed.One version matches the amplifier's Zopt to 50 ohms, the other removes the input matching of the amplifier and only retains the DC-blocking capacitor and match the input impedance of the antenna to the Zopt,the two versions of the circuit have the same transistor size, bias voltage and lump component value, the only difference is whether the input matching network exists or not, the circuit is implemented using 0.18-μm CMOS by TSMC.Slotted antenna array adopts substrate integrated waveguide. Finally,Both of them are combined into an active antenna via the wire bonding.
    In the second part, the millimeter-wave band power amplifier is designed, this circuit uses the 0.15-μm GaAs pHEMT process provided by WIN semiconductor. In the output load matching, the magnetically coupled resonator and multi-stage matching network are used to expand the bandwidth. Finally, through on-wafer measurement, |S_21 | is greater than 14.9 dB at 24.7-39.6 GHz, the saturated output power (Psat) is greater than 23.8 dBm at 24.5-38 GHz.Psat 1dB bandwidth is 43.2%,PAEpeak up to 32.8%.Although the bandwidth is reduced compared with simulation,it still covers more millimeter wave frequency band.
    This paper introduce the design process, circuit layout and comparison of simulation and measurement results of the two topics, and analyze the possible reasons for the differences.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 低雜訊主動集成天線 2 1.2.2 應用於第五代行動通訊之寬頻功率放大器 3 1.3 研究貢獻 4 1.4 論文組織 4 第二章 使用互補式金氧半導體與印刷電路板整合之K頻段低雜訊主動天線 5 2.1 前言 5 2.2 設計流程 5 2.3 K頻帶低雜訊放大器 7 2.3.1 偏壓與電晶體尺寸選擇 7 2.3.2 源級退化電感 13 2.3.3 旁路電容 15 2.3.4 穩定度分析 16 2.3.5 兩級放大器 17 2.3.6 模擬與on-wafer量測結果 22 2.4 天線整合低雜訊放大器 28 2.4.1 電路板之LNA偏壓設計與S參數量測 28 2.4.2 電路板之匹配網路 33 2.4.3 主動集成天線模擬 37 2.4.4 主動集成天線量測 41 2.5 低雜訊放大器文獻比較 44 2.6 結語 44 第三章 應用於第五代行動通訊之超寬頻砷化鎵功率放大器 46 3.1 前言 46 3.2 設計流程 46 3.3 功率級放大器 47 3.3.1偏壓與電晶體尺寸選擇 47 3.3.2奇模與低頻振盪分析 49 3.3.3寬頻輸出匹配網路 52 3.4 驅動級功率放大器 57 3.4.1 偏壓與電晶體尺寸選擇 57 3.4.2 級間匹配電路 57 3.4.3 輸入匹配電路 59 3.5 EM環境模擬與電路整體架構 60 3.5.1 旁路電容 60 3.5.2 微帶線 61 3.5.3 整體電路圖 63 3.6 模擬結果 65 3.6.1 穩定度分析 65 3.6.2 小訊號模擬 66 3.6.3 大訊號模擬 67 3.7 on-wafer量測結果與模擬比較 69 3.8 結語 78 第四章 結論 79 4.1 總結 79 4.2 未來展望 80 參考文獻 81 附錄 86

    [1]C.-H. Tseng and Y.-H. Lin, “24-GHz self-injection-locked vital-sign radar with CMOS injection-locked frequency divider based on push-push oscillator topology,” IEEE Microw. Compon. Lett., vol. 28, no. 11, pp. 1053– 1055, Nov. 2018.
    [2]J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, 2010.
    [3]B. Razavi, RF Microelectronics (2nd Edition), Prentice Hall Press, 2001.
    [4]Y. Song et al., “A compact Ka-band active integrated antenna with a GaAs amplifier in a ceramic package,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2416–2419, 2017.
    [5]M. Sun, Y. Q. Zhang, Y. X. Guo, M. F. K. , L. C. Ong, and M. S. Leong, “Integration of circular polarized array and LNA in LTCC as a 60-GHz active receiving antenna,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 3083–3089, Aug. 2011.222
    [6]W. Alshrafi, R. Wilke, and D. Heberling, “Multi layer planar Ka-band satellite receive antenna with integrated LNA,” in 2017 International Symposium on Antennas and Propagation, (ISAP), 2017, pp. 1–2.
    [7]J. Zhang, G. Goussetis, L. Richard, G. Huang, V. Fusco, and F. Dielacher, “Low noise amplifier with integrated balanced antenna for 60 GHz wireless communications,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3407–3411, Jun. 2014.
    [8]J. G. Go, J. Y. Chung, “A compact LNA integrated antenna for global navigation satellite systems,” In proc. IEEE-RFIT, 2017, pp. 229-231.
    [9]Khan, A. L. V. López, A. Ç. Ulusoy and J. Papapolymerou, "Packaging a $W$ -Band Integrated Module With an Optimized Flip-Chip Interconnect on an Organic Substrate," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 1, pp. 64-72, Jan. 2014.
    [10]H. An, B. Nauwelaers and A. van de Capelle, "Measurement technique for active microstrip antennas," in Electronics Letters, vol. 29, no. 18, pp. 1646-1647, 2 Sept. 1993.
    [11]H. An, B. K. J. C. Nauwelaers, A. R. Van de Capelle and R. G. Bosisio, "A novel measurement technique for amplifier-type active antennas," 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4), San Diego, CA, USA, 1994, pp. 1473-1476 vol.3.
    [12]Kyung-Wan Yu, Yin-Lung Lu, Da-Chiang Chang, V. Liang and M. F. Chang, "K-band low-noise amplifiers using 0.18 μm CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 14, no. 3, pp. 106-108, March 2004
    [13]S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, Jul. 2005.
    [14]A. Sayag et al., "A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18μm CMOS technology," 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 373-376.
    [15]C. Chen, H. Yang and Y. Lin, "A 21–27 GHz CMOS wideband LNA with 9.3±1.3 dB gain and 103.9±8.1 ps group-delay using standard 0.18 μm CMOS technology," 2009 IEEE Radio and Wireless Symposium, 2009, pp. 586-589
    [16]Y. Wei, S. S. H. Hsu and J. Jin, "A Low-Power Low-Noise Amplifier for K-Band Applications," in IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 116-118, Feb. 2009
    [17]T. Wang, "A Low-Voltage Low-Power K-Band CMOS LNA Using DC-Current-Path Split Technology," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 519-521, Sept. 2010
    [18]Z. Pi and F. Khan, ‘‘An introduction to millimeter-wave mobile broadband systems,’’ IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.
    [19]H. Jia, C. C. Prawoto, B. Chi, Z. Wang, and C. P. Yue, “A full ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 9, pp. 2657–2668, Sep. 2018.
    [20]N. Ali, P. Agarwal, S. Mirabbasi, and D. Heo, “A 42–46.4% PAE continuous class-F power amplifier with Cgd neutralization at 26–34 GHz in 65 nm CMOS for 5G applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2017, pp. 212–215.
    [21]T. Li, M.-Y. Huang, and H. Wang, “Millimeter-wave continuous-mode power amplifier for 5G MIMO applications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 3088–3098, Jul. 2019.
    [22]Z. -J. Huang, Z. -H. Fu, B. -. W. Huang, Y. -T. Lin, K. -Y. Kao and K. -Y. Lin, "A Millimeter-Wave Dual-Band Class-F Power Amplifier in 90 nm CMOS," 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hiroshima, Japan, 2020, pp. 70-72
    [23]M. Vigilante and P. Reynaert, “A wideband class-AB power amplifier with 29–57-GHz AM-PM compensation in 0.9-V 28-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1288–1301, May 2018.
    [24]W.-C. Huang, J.-L. Lin, Y.-H. Lin, and H. Wang, “A K-band power amplifier with 26-dBm output power and 34% PAE with novel inductance-based neutralization in 90-nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2018, pp. 228–231.
    [25]W. Chan and J. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554–564, Mar. 2010.
    [26]S. Hu, F. Wang, and H. Wang, “A 28 GHz/37 GHz/39 GHz multiband linear Doherty power amplifier for 5G massive MIMO applications,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 32–33.
    [27]S. Y. Mortazavi and K.-J. Koh, “A class F-1/F 24-to-31 GHz power amplifier with 40.7% peak PAE, 15 dBm OP1dB, and 50mW Psatin 0.13μm SiGe BiCMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 254–255.
    [28]T. Li, M. Huang and H. Wang, "A continuous-mode harmonically tuned 19-to-29.5GHz ultra-linear PA supporting 18Gb/s at 18.4% modulation PAE and 43.5% peak PAE," IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2018, pp. 410-412.
    [29]P. C. Huang, Z. M. Tsai, K. Y. Lin and H. Wang, “A 17–35 GHz Broadband, High Efficiency PHEMT Power Amplifier Using Synthesized Transformer,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, Jan. 2012.
    [30]D. P. Nguyen, T. Pham, B. L. Pham and A. Pham, "A High Efficiency High Power Density Harmonic-Tuned Ka Band Stacked-FET GaAs Power Amplifier,"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2016, pp. 1-4.
    [31]D. P. Nguyen, X. -T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A Wideband High Efficiency Ka-Band MMIC Power Amplifier for 5G Wireless Communications,"2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1-5.
    [32]J. Zhang, J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz Compact PHEMT Power Amplifier Using Coupled-Line Based MCCR Matching Technique," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 956-959
    [33]P. W. Huang, "Research on Millimeter-Wave Dual-Band and Wide-Band Power Amplifier for 5G Mobile Communication," master thesis, National Taiwan University, January 2021.
    [34]T.-K. Nguyen et al., “CMOS low noise amplifier design optimization techniques,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 5, pp. 1433–1442, May 2004.
    [35]蔡昀廷.許育甄,「An Improved Substrate Integrated Waveguide Slot Antenna Array with Low Sidelobe Level」,國立臺灣科技大學,民國一百零九年七月
    [36]L. Samoska, K. Y. Lin, H. Wang, Y. H. Chung, M. Aust, S. Weinreb, and D. Dawson, “On the stability of millimetre-wave power amplifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2002, vol. 1, pp. 429–432.
    [37]G. Pyo, J. Yang, C. Kim and S. Hong, "K-Band Dual-Mode Receiver CMOS IC for FMCW/UWB Radar," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6, pp. 393-397, June 2014.
    [38]Datasheet of Dielectric Laboratories, J30XXBA012LX4 https://www.alldatasheet.co.kr/datasheet-pdf/pdf_kor/484737/DILABS/J30XXBA012LX4.html

    無法下載圖示 全文公開日期 2024/09/09 (校內網路)
    全文公開日期 2026/09/09 (校外網路)
    全文公開日期 2026/09/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE