簡易檢索 / 詳目顯示

研究生: 熊冠凱
Kuan-Kai Hsiung
論文名稱: 設計多執行緒架構並應用於5G新無線實體下行共享通道
Design of Multi-Threaded Architecture With Application to 5G NR Physical Downlink Shared Channel
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 許騰尹
Terng-Yin Hsu
柯正浩
Kevin Cheng-Hao Ko
徐勝均
Sendren Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 84
中文關鍵詞: 第五代行動通訊新無線超可靠度低延遲通訊實體層實體下行共享通道
外文關鍵詞: The 5th Generation Mobile Networks (5G) New Radio (NR), Uultra-Reliable Low-Latency Communication (URLLC), Physical Layer, Physical Downlink Shared Channel (PDSCH)
相關次數: 點閱:424下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 方法與貢獻 3 1.4 論文架構 4 第二章 預備知識 6 2.1 第五代行動通訊新無線介紹 6 2.1.1 第五代行動通訊新無線發展 6 2.1.2 三大使用情境 7 2.2 第三代合作夥伴計畫 10 2.3 無線通訊系統架構 13 2.4 實體層介紹 14 2.5 實體下行通道介紹 16 2.6 OpenAirInterface模擬平台 18 2.7 幀結構 22 2.8 多執行緒概述 23 第三章 PDSCH程式架構設計 27 3.1 問題陳述 27 3.2 原始PDSCH架構分析 30 3.3 新型PDSCH架構設計 32 3.3.1 資料切片 32 3.3.2 任務分發 33 3.3.3 執行流程分割 35 第四章 執行緒的管理與設計 37 4.1 Cirtical Section 37 4.2 Race Codition 38 4.2.1 Mutex 38 4.2.2 Deadlock 39 4.3 多執行緒管理 41 第五章 測試結果與討論 44 5.1 評估標準 44 5.1.1 執行時間 44 5.1.2 阿姆達爾定律(Amdahl’s Law) 45 5.1.3 古斯塔夫森定律(Gustafson’s Law) 47 5.2 實驗流程 48 5.2.1 壓力測試 48 5.2.2 多執行緒測試 49 5.3 實驗結果與分析 50 5.3.1 測試結果 51 5.3.2 評估標準結果 56 第六章 結論與未來展望 59 6.1 結論 59 6.2 未來展望 60 參考文獻 62

    [1] A. Aminjavaheri, A. RezazadehReyhani, R. Khalona, H. Moradi, and B. Farhang-Boroujeny, “Underlay control signaling for ultra-reliable low-latency IoT communications,” in Proc. IEEE International Conference on Communications Workshops, Kansas City, MO, USA, May 20-24, 2018, pp. 1-6,
    DOI: 10.1109/ICCW.2018.8403493.
    [2] T. Manglayev, R. C. Kizilirmak, and Y. H. Kho, “Comparison of parallel and successive interference cancellation for non-orthogonal multiple access,” in Proc. International Conference on Computing and Network Communications, Astana, Kazakhstan, August 15-17, 2018, pp. 74-77, DOI: 10.1109/CoCoNet.2018.8476815.
    [3] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas, N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio, N. Alagha, and S. Cioni, “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2624-2639, March 2019, DOI: 10.1109/TVT.2019.2895263.
    [4] C. Hsu, Y. Hsu, and H. Wei, “Energy-efficient and reliable MEC offloading for heterogeneous industrial IoT networks,” in Proc. European Conference on Networks and Communications, Valencia, Spain, June 18-21, 2019, pp. 384-388,
    DOI: 10.1109/EuCNC.2019.8802020.
    [5] J. Yeo, H. Ji, J. Bang, Y. Kim, and J. Lee, “A novel group retransmission scheme for industrial IoT over 5G,” in Proc. IEEE Globecom Workshops, Waikoloa, HI, USA, December 9-13, 2019, pp. 1-5, DOI: 10.1109/GCWkshps45667.2019.9024444.
    [6] M. Mozaffari, Y.-P. E. Wang, O. Liberg, and J. Bergman, “Flexible and efficient deployment of NB-IoT and LTE-MTC in coexistence with 5G New Radio,” in Proc. IEEE Conference on Computer Communications Workshops, Paris, France, May 2-April 29, 2019, pp. 391-396, DOI: 10.1109/INFCOMW.2019.8845119.
    [7] N. H. Mahmood, D. Laselva, D. Palacios, M. Emara, M. C. Filippou, D. M. Kim, and I. de-la-Bandera, “Multi-channel access solutions for 5G New Radio,” in Proc. IEEE Wireless Communications and Networking Conference Workshop, Marrakech, Morocco, April 15-18, 2019, pp. 1-6, DOI: 10.1109/WCNCW.2019.8902668.
    [8] L. Chettri and R. Bera, “A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16-32, January 2020, DOI: 10.1109/JIOT.2019.2948888.
    [9] M. Säily, C. B. Estevan, J. J. Gimenez, F. Tesema, W. Guo, D. Gomez-Barquero, and D. Mi, “5G radio access network architecture for terrestrial broadcast services,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 404-415, June 2020,
    DOI: 10.1109/TBC.2020.2985906.
    [10] L. C. Alexandre, A. L. De Souza Filho, and A. C. Sodré, “Indoor coexistence analysis among 5G New Radio, LTE-A and NB-IoT in the 700 MHz band,” IEEE Access, vol. 8, pp. 135000-135010, July 2020, DOI: 10.1109/ACCESS.2020.3011267.
    [11] S. A. Gbadamosi, G. P. Hancke, and A. M. Abu-Mahfouz, “Building upon NB-IoT networks: A roadmap towards 5G New Radio networks,” IEEE Access, vol. 8, pp. 188641-188672, October 2020, DOI: 10.1109/ACCESS.2020.3030653.
    [12] H. Malik, M. M. Alam, Y. Le Moullec, and Q. Ni, “Interference-aware radio resource allocation for 5G ultra-reliable low-latency communication,” in Proc. IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, December 9-13, 2018, pp. 1-6,
    DOI: 10.1109/GLOCOMW.2018.8644301.
    [13] P. Popovski, Č. Stefanović, J. J. Nielsen, E. de Carvalho, M. Angjelichinoski, K. F. Trillingsgaard, and A. Bana, “Wireless access in ultra-reliable low-latency communication (URLLC),” IEEE Transactions on Communications, vol. 67, no. 8, pp. 5783-5801, August 2019, DOI: 10.1109/TCOMM.2019.2914652.
    [14] W. Chen, X. Fan, and L. Chen, “A CNN-based packet classification of eMBB, mMTC and URLLC applications for 5G,” in Proc. International Conference on Intelligent Computing and its Emerging Applications, Tainan, Taiwan, August 30-September 1, 2019, pp. 140-145, DOI: 10.1109/ICEA.2019.8858305.
    [15] Y. Huang, S. Li, C. Li, Y. T. Hou, and W. Lou, “A deep-reinforcement-learning-based approach to dynamic eMBB/URLLC multiplexing in 5G NR,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6439-6456, July 2020, DOI: 10.1109/JIOT.2020.2978692.
    [16] Y. Ohta, R. Takechi, H. Takahashi, and R. Atsuta, “NR-WLAN aggregation: Architecture for supporting URLLC in 5G IoT networks,” in Proc. IEEE Vehicular Technology Conference, Antwerp, Belgium, May 25-28, 2020, pp. 1-5,
    DOI: 10.1109/VTC2020-Spring48590.2020.9128745.
    [17] ITU, “IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU-R M.2083-0, September 2015. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf, Accessed on: December 13, 2020.
    [18] A. K. Bachkaniwala, V. Dhanwani, S. S. Charan, D. Rawal, and S. K. Devar, “IMT-2020 evaluation of EUHT radio interface technology,” in Proc. IEEE 5G World Forum, Bangalore, India, September 10-12, 2020, pp. 631-636,
    DOI: 10.1109/5GWF49715.2020.9221023.
    [19] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, June 2014, DOI: 10.1109/JSAC.2014.2328098.
    [20] B. Akshita, “Modulation schemes for future 5G cellular networks,” International Journal of Computer Networks and Wireless Communications, vol. 8, no. 1, pp. 16-22, January 2018.
    [21] D. Soldani, “5G beyond radio access: A flatter sliced network,” Mondo Digitale, vol. 17, no. 74, pp. 1-20, March 2018.
    [22] C. Li, C. Li, K. Hosseini, S. B. Lee, J. Jiang, W. Chen, G. Horn, T. Ji, J. E. Smee, and J. Li, “5G-based systems design for tactile internet,” Proceedings of the IEEE, vol. 107, no. 2, pp. 307-324, February 2019, DOI: 10.1109/JPROC.2018.2864984.
    [23] J. Sachs, L. A. A. Andersson, J. Araújo, C. Curescu, J. Lundsjö, G. Rune, E. Steinbach, and G. Wikström, “Adaptive 5G low-latency communication for tactile internet services,” Proceedings of the IEEE, vol. 107, no. 2, pp. 325-349, February 2019,
    DOI: 10.1109/JPROC.2018.2864587.
    [24] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5G evolution: A view on 5G cellular technology beyond 3GPP Release 15,” IEEE Access, vol. 7, pp. 127639-127651, September 2019, DOI: 10.1109/ACCESS.2019.2939938.
    [25] S. Henry, A. Alsohaily, and E. S. Sousa, “5G is real: Evaluating the compliance of the 3GPP 5G New Radio system with the ITU IMT-2020 requirements,” IEEE Access, vol. 8, pp. 42828-42840, March 2020, DOI: 10.1109/ACCESS.2020.2977406.
    [26] P. K. Mishra, S. Pandey, and S. K. Biswash, “Efficient resource management by exploiting D2D communication for 5G networks,” IEEE Access, vol. 4, pp. 9910-9922, September 2016, DOI: 10.1109/ACCESS.2016.2602843.
    [27] S. R. Khosravirad, L. Mudolo, and K. I. Pedersen, “Flexible multi-bit feedback design for HARQ operation of large-size data packets in 5G,” in Proc. IEEE Vehicular Technology Conference, Sydney, NSW, Australia, June 4-7, 2017, pp. 1-5,
    DOI: 10.1109/VTCSpring.2017.8108610.
    [28] L. Chiaraviglio, L. Amorosi, N. Blefari-Melazzi, P. Dell’Olmo, C. Natalino, and P. Monti, “Optimal design of 5G networks in rural zones with UAVs, optical rings, solar panels and batteries,” in Proc. International Conference on Transparent Optical Networks, Bucharest, Romania, July 1-5, 2018, pp. 1-4,
    DOI: 10.1109/ICTON.2018.8473712.
    [29] S. Moon, S. Kwon, H. Kim, B. Song, and I. Hwang, “NSC data detection scheme in NR-based communications system,” in Proc. International Conference on Electronics, Information, and Communication, Auckland, New Zealand, January 22-25, 2019, pp. 1-5, DOI: 10.23919/ELINFOCOM.2019.8706356.
    [30] E. Garro, M. Fuentes, J. L. Carcel, H. Chen, D. Mi, F. Tesema, J. J. Gimenez, and D. Gomez-Barquero, “5G mixed mode: NR multicast-broadcast services,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 390-403, June 2020,
    DOI: 10.1109/TBC.2020.2977538.
    [31] A. Omri, M. Shaqfeh, A. Ali, and H. Alnuweiri, “Synchronization procedure in 5G NR systems,” IEEE Access, vol. 7, pp. 41286-41295, March 2019,
    DOI: 10.1109/ACCESS.2019.2907970.
    [32] L. Shi, D. Shi, X. Zhang, B. Meunier, H. Zhang, Z. Wang, A. Vladimirescu, W. Li, Y. Zhang, J. Cosmas, K. Ali, N. Jawad, R. Zetik, E. Legale, M. Satta, J. Wang, and J. Song, “5G internet of radio light positioning system for indoor broadcasting service,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 534-544, June 2020,
    DOI: 10.1109/TBC.2020.2981755.
    [33] S. Lien, D. Deng, C. Lin, H. Tsai, T. Chen, C. Guo, and S. Cheng, “3GPP NR sidelink transmissions toward 5G V2X,” IEEE Access, vol. 8, pp. 35368-35382, February 2020, DOI: 10.1109/ACCESS.2020.2973706.
    [34] 3GPP, “System Architecture for the 5G System; Stage 2,” The 3rd Generation Partnership Project (3GPP).
    [35] 3GPP, “Study on New Radio (NR) Access Technology,” The 3rd Generation Partnership Project (3GPP).
    [36] 3GPP, “5G NR; Base Station (BS) Radio Transmission and Reception,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.104, April 2019, version 15.4.0.
    [37] 3GPP, “5G NR; Physical Channels and Modulation,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, April 2019, version 15.4.0.
    [38] 3GPP, “5G NR; Multiplexing and Channel Coding,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.212, April 2019, version 15.4.0.
    [39] 3GPP, “5G NR; Physical Layer Procedures for Control,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.213, April 2019, version 15.4.0.
    [40] 3GPP, “5G NR; NR; Physical Layer Procedures for Data,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, April 2019, version 15.4.0.
    [41] 3GPP, “5G NR; Physical Layer Measurements,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.215, April 2019, version 15.4.0.
    [42] 3GPP, “5G NR; Radio Resource Control (RRC); Protocol Specification,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.331, April 2019, version 15.4.0.
    [43] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21-28, January 1962, DOI: 10.1109/TIT.1962.1057683.
    [44] S. Namba, T. Warabino, and S. Kaneko, “BBU-RRH switching schemes for centralized RAN,” in Proc. International Conference on Communications and Networking in China, Kun Ming, China, August 8-10, 2012, pp. 762-766,
    DOI: 10.1109/ChinaCom.2012.6417586.
    [45] S. Chen, K. Peng, Y. Zhang, and J. Song, “Near capacity LDPC coded MU-BICM-ID for 5G,” in Proc. International Wireless Communications and Mobile Computing Conference, Dubrovnik, Croatia, August 24-28, 2015, pp. 1418-1423,
    DOI: 10.1109/IWCMC.2015.7289290.
    [46] T. Richardson and S. Kudekar, “Design of low-density parity check codes for 5G New Radio,” IEEE Communications Magazine, vol. 56, no. 3, pp. 28-34, March 2018,
    DOI: 10.1109/MCOM.2018.1700839.
    [47] Y. Zhang, K. Peng, X. Wang, and J. Song, “Performance analysis and code optimization of IDMA with 5G New Radio LDPC code,” IEEE Communications Letters, vol. 22, no. 8, pp. 1552-1555, August 2018, DOI: 10.1109/LCOMM.2018.2843347.
    [48] W. Ji, Z. Wu, K. Zheng, L. Zhao, and Y. Liu, “Design and implementation of a 5G NR system based on LDPC in open source SDR,” in Proc. IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, December 9-13, 2018, pp. 1-6,
    DOI: 10.1109/GLOCOMW.2018.8644263.
    [49] H. Wu and H. Wang, “A high throughput implementation of QC-LDPC codes for 5G NR,” IEEE Access, vol. 7, pp. 185373-185384, December 2019,
    DOI: 10.1109/ACCESS.2019.2960839.
    [50] A. Li, Q. Jiang, K. Xie, M. Wang, L. Li, and W. Luo, “Low latency LDPC hard-decision algorithm for 5G NR,” IET Circuits, Devices & Systems, vol. 14, no. 2, pp. 229-234, March 2020, DOI: 10.1049/iet-cds.2019.0160.
    [51] B. Wang, Y. Zhu, and J. Kang, “Two effective scheduling schemes for layered belief propagation of 5G LDPC codes,” IEEE Communications Letters, vol. 24, no. 8, pp. 1683-1686, April 2020, DOI: 10.1109/LCOMM.2020.2991473.
    [52] R. Li, X. Zhou, H. Pan, H. Su, and Y. Dou, “A high-throughput LDPC decoder based on GPUs for 5G New Radio,” in Proc. IEEE Symposium on Computers and Communications, Rennes, France, July 7-10, 2020, pp. 1-7,
    DOI: 10.1109/ISCC50000.2020.9219558.
    [53] R. R. Olson, “The airborne open system interconnection data link test facility,” in Proc. IEEE/AIAA Digital Avionics Systems Conference, Seattle, WA, USA, October 5-8, 1992, pp. 509-513, DOI: 10.1109/DASC.1992.282109.
    [54] Y. Li, D. Li, W. Cui, and R. Zhang, “Research based on OSI model,” in Proc. IEEE International Conference on Communication Software and Networks, Xi’an, China, May 27-29, 2011, pp. 554-557, DOI: 10.1109/ICCSN.2011.6014631.
    [55] 3GPP, “5G NR; Physical layer; General description,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.201, December 2017, version 15.0.0.
    [56] 3GPP, “Study on New Radio Access Technology; Physical Layer Aspects,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.802, September 2017, version 14.2.0.
    [57] “ShareTechnote,” [Online]. Available: http://www.sharetechnote.com/, Accessed on: December 13, 2020.
    [58] G. Mountaser, M. L. Rosas, T. Mahmoodi, and M. Dohler, “On the feasibility of MAC and PHY split in cloud RAN,” in Proc. IEEE Wireless Communications and Networking Conference, San Francisco, CA, USA, March 19-22, 2017, pp. 1-6,
    DOI: 10.1109/WCNC.2017.7925770.
    [59] 3GPP, “Study on New Radio Access Technology; Radio access architecture and interfaces,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.801, March 2017, version 14.0.0.
    [60] 3GPP, “Study on New Radio Access Technology; Radio Interface Protocol Aspects,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.804, March 2017, version 14.0.0.
    [61] 3GPP, “Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC),” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.824, February 2019, version 1.0.1.
    [62] F. Kaltenberger, R. Ghaffar, and R. Knopp, “Low-complexity distributed MIMO receiver and its implementation on the OpenAirInterface platform,” in Proc. Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, September 13-16, 2009, pp. 2494-2498, DOI: 10.1109/PIMRC.2009.5449726.
    [63] N. Nguyen, R. Knopp, N. Nikaein, and C. Bonnet, “Implementation and validation of multimedia broadcast multicast service for LTE/LTE-advanced in OpenAirInterface platform,” in Proc. Annual IEEE Conference on Local Computer Networks - Workshops, Sydney, NSW, Australia, October 21-24, 2013, pp. 70-76,
    DOI: 10.1109/LCNW.2013.6758500.
    [64] R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “OpenAirInterface-an effective emulation platform for LTE and LTE-Advanced,” in Proc. International Conference on Ubiquitous and Future Networks, Shanghai, China, July 8-11, 2014, pp. 127-132,
    DOI: 10.1109/ICUFN.2014.6876765.
    [65] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, October 2014,
    DOI: 10.1145/2677046.2677053.
    [66] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance analysis of OpenAirInterface system emulation,” in Proc. International Conference on Future Internet of Things and Cloud, Rome, Italy, August 24-26, 2015, pp. 662-669,
    DOI: 10.1109/FiCloud.2015.77.
    [67] Y. Y. Chun, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan, “Performance study of LTE experimental testbed using OpenAirInterface,” in Proc. International Conference on Advanced Communication Technology, Pyeongchang, South Korea, January 31-February 3, 2016, pp. 617-622, DOI: 10.1109/ICACT.2016.7423494.
    [68] “Home·Wiki·oai/openairinterface5G·Gitlab,” [Online]. Available: https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/home, Accessed on: December 13, 2020.
    [69] H. Shen, X. Wei, H. Liu, Y. Liu, and K. Zheng, “Design and implementation of an LTE system with multi-thread parallel processing on OpenAirInterface platform,” in Proc. IEEE Vehicular Technology Conference, Montreal, QC, Canada, September 18-21, 2016, pp. 1-5, DOI: 10.1109/VTCFall.2016.7880957.
    [70] X. Wei, H. Liu, Z. Geng, K. Zheng, R. Xu, Y. Liu, and P. Chen, “Software defined radio implementation of a non-orthogonal multiple access system towards 5G,” IEEE Access, vol. 4, pp. 9604-9613, December 2016, DOI: 10.1109/ACCESS.2016.2634038.
    [71] W. Lai and K. Chiu, “NUMAP: NUMA-aware multi-core pinning and pairing for network slicing at the 5G mobile edge,” in Proc. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Lanzhou, China, November 18-21, 2019, pp. 22-27, DOI: 10.1109/APSIPAASC47483.2019.9023272.
    [72] F. Kaltenberger and S. Wagner, “Experimental analysis of network-aided interference-aware receiver for LTE MU-MIMO,” in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, A Coruña, Spain, June 22-25, 2014, pp. 325-328,
    DOI: 10.1109/SAM.2014.6882407.
    [73] P. Tan, “Task scheduling of real-time systems on multi-core architectures,” in Proc. Second International Symposium on Electronic Commerce and Security, Nanchang, China, May 22-24, 2009, pp. 190-193, DOI: 10.1109/ISECS.2009.161.
    [74] M. Malik, L. Riha, C. Shea, and T. El-Ghazawi, “Task scheduling for GPU accelerated hybrid OLAP systems with multi-core support and text-to-integer translation,” in Proc. IEEE International Parallel and Distributed Processing Symposium Workshops & PhD Forum, Shanghai, China, May 21-25, 2012, pp. 1987-1996,
    DOI: 10.1109/IPDPSW.2012.259.
    [75] C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN architecture: A comparison of multiple optical fronthaul networks,” in Proc. International Conference on Optical Network Design and Modeling, Budapest, Hungary, May 15-17, 2017, pp. 1-6, DOI: 10.23919/ONDM.2017.7958544.
    [76] T. Mujahid, A. U. Rahman, and M. M. Khan, “GPU-accelerated multivariate empirical mode decomposition for massive neural data processing,” IEEE Access, vol. 5, pp. 8691-8701, May 2017, DOI: 10.1109/ACCESS.2017.2705136.
    [77] D. Boviz, C. S. Chen, and S. Yang, “Effective design of multi-user reception and fronthaul rate allocation in 5G cloud RAN,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp. 1825-1836, August 2017,
    DOI: 10.1109/JSAC.2017.2710718.
    [78] H. Lin, F. Gao, S. Jin, and G. Y. Li, “A new view of multi-user hybrid massive MIMO: Non-orthogonal angle division multiple access,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2268-2280, October 2017,
    DOI: 10.1109/JSAC.2017.2725682.
    [79] K. Zu, J. Zhu, and M. Haardt, “Uplink multi-user MIMO detection via parallel access,” in Proc. ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, May 12-17, 2019, pp. 4365-4369,
    DOI: 10.1109/ICASSP.2019.8682359.
    [80] “Information technology Portable Operating System Interface (POSIX),” [Online]. Available: https://www.iso.org/standard/50516.html, Accessed on: December 13, 2020.
    [81] S. Han, Y. Yun, and Y. H. Kim, “Profiling-based task graph extraction on multiprocessor system-on-chip,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, Jeju, South Korea, October 25-28, 2016, pp. 510-513,
    DOI: 10.1109/APCCAS.2016.7804016.
    [82] M. A. N. Al-hayanni, F. Xia, A. Rafiev, A. Romanovsky, R. Shafik, and A. Yakovlev, “Amdahl’s law in the context of heterogeneous many-core systems – a survey,” IET Computers & Digital Techniques, vol. 14, no. 4, pp. 133-148, June 2020,
    DOI: 10.1049/iet-cdt.2018.5220.
    [83] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol. 31, no. 5, pp. 532-533, May 1988.
    [84] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration: a survey of architectures methods and applications,” ACM Computing Surveys, vol. 51, no. 4, pp. 1-39, July 2018. DOI: 10.1145/3193827
    [85] A. Aalsaud, A. Rafiev, F. Xia, R. Shafik, and A. Yakovlev, “Model-free runtime management of concurrent workloads for energy-efficient many-core heterogeneous systems,” in Proc. International Symposium on Power and Timing Modeling, Optimization and Simulation, Platja d’Aro, Spain, July 2-4, 2018, pp. 206-213,
    DOI: 10.1109/PATMOS.2018.8464142.

    無法下載圖示 全文公開日期 2026/01/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE