簡易檢索 / 詳目顯示

研究生: 林威穎
WEI-YING LIN
論文名稱: 多執行緒平行架構應用於軟體基地臺實體層之上行排程
Multi-Thread Parallel Architecture for Uplink Scheduling in Soft PHY of eNB
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 許騰尹
Terng-Yin Hsu
柯正浩
Cheng-Hao Ko
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 52
中文關鍵詞: 軟體定義實體層多執行續Pthreads函式庫平行處理
外文關鍵詞: Soft-defined physical layer, multi-thread, Pthreads Library, parallel processing.
相關次數: 點閱:499下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第五代行動通訊技術(5G)受到了許多重視,且目前仍被許多研究學者探討中。具前景的軟體定義網路(soft-defined network, SDN) 技術將是5G無線網絡設計中的關鍵組成部分。本論文針對軟體定義實體層中接收端(receiver end of soft-defined physical layer, PHY RX)平行化的實現以及上傳的加速來作探討和驗證。
    LTE standard 制定子框架(subframe)單位為一個傳輸時間區間Transmission Time Interval (TTI),也就是規定PHY處理一個subframe的時間需要在1 millisecond (ms)以內完成。若無法在規定的1 ms內處理完當前subframe,則會啟動重傳Hybrid Automatic Repeat request (HARQ)機制。若是一直無法在1 ms內處理完造成多次的重傳,會導致網速下降,甚至基地臺當機(eNB crash)。以基地臺服務多個UEs為考量,在原本沒有平行處理的架構下,頻寬5 MHz下已經無法完全服務多使用者(multi users)。若是使用更大的頻寬和更多的資源區塊(resource block, RB),提供multi users的服務將會更不穩定,在頻寬20MHz能上線的UEs上限只有2個UEs。
    因此,在本研究中我們提出應用於Soft PHY RX的多執行續(multithread)的平行化架構。將PHY層中RX的流程重新編排,利用Pthreads (POSIX threads)來實作我們的RX的平行流程,將CPU的8條threads 全部一起使用,不論是在處理PHY RX 或是UEs的連線,皆把原本的架構中非必要的循序運作的流程改成平行處理,使得PHY層執行的效率更好以提高傳輸量。實驗顯示,經由本研究所提出平行處理的方法,PHY RX的上傳的速度將提升至原本速度的6.3倍,基地臺也將可以服務更多UEs。


    The 5G (5th generation mobile networks) techniques have attracted a lot of attention and are still under investigation by many researchers. The soft-define network (SDN) has been proposed as one of the promising techniques, which will be a key component in the design of 5G wireless networks. This thesis mainly discusses and verifies the implementation of the parallel processing and the acceleration of uploading at the receiver end of soft-defined physical layer (PHY RX).
    The LTE standard defines a subframe unit as a Transmission Time Interval (TTI), that is, the time required for the PHY to process a subframe needs to be completed within 1 millisecond (ms). If it has not been processed within 1 ms, it will cause multiple retransmissions, resulting in a drop in network speed and even a base station crash (eNB crash). Considering that multiple base stations serve multiple UEs, under the architecture that is not processed in parallel, it is impossible to fully serve multiple users at a bandwidth of 5 MHz. If one uses a larger bandwidth and more resource blocks (RBs), the service that provides multi users will be more unstable. At 20MHz, the upper limit of UEs that can be online is only 2 UEs.
    Therefore, in this study we propose a multi-thread parallelization architecture for Soft PHY RX. Reorganize the RX process in the PHY layer and use Pthreads (POSIX threads) to implement our RX parallel process. We use all 8 threads of the CPU together. Whether processing the PHY RX or UEs connection, the process of non-essential sequential operation in the original architecture is changed to parallel processing, so that the PHY layer performs better to improve the transmission amount. Experiments show that, through the parallel processing method proposed by this research, the upload speed of PHY RX will increase to 6.3 times of the original speed, and the base station will also be able to serve more UEs

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第1章 簡介 1 1.1 研究背景與動機 1 1.2 論文架構 2 第2章 預備知識 3 2.1 PHY Layer 3 2.2 OAI概述 4 2.3上行流程各physical channel功能介紹 6 2.4 OAI的PHY層流程 9 2.5 Pthreads概述 10 2.6 Resource Block分配概念 15 第3章 PHY層上行流程新架構設計 16 3.1 問題描述 16 3.2 PHY層上行流程新架構 16 3.3 各流程相依性之分析 19 3.4 PHY層上行流程分割 20 第4章 PHY層上行流程之Thread新架構應用 22 4.1 Threading設計方法 22 4.2 Multi-thread新架構與訊號傳遞 27 4.3 Multi thread執行同一function實作 29 4.4 Multi-thread架構與kernel thread的執行分配 30 第5章 Multi-thread版PHY層上行流程實測 31 5.1 硬體設備與軟體環境 31 5.2 模擬與壓力測試 34 5.3 實測結果與PHY層行流程分析 36 5.4 實測結果與PDSCH執行分析 37 5.5 實測結果與20MHz頻寬分析 39 第6章 結論與未來研究方向 41 6.1 結論 41 6.2 未來研究方向 41 參考文獻 42

    [1] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance analysis of OpenAirInterface system emulation,” Future Internet of Things and Cloud (FiCloud), Rome, Italy, Aug. 24-26, 2015, pp. 662-669.
    [2] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet,, “OpenAirInterface: a flexible platform for 5G research,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38, Oct. 2014.
    [3] S. Grubisic, W. P. Carpes, J. P. A. Bastos, and G. Santos, “Association of a PSO optimizer with a quasi-3d ray-tracing propagation model for mono and multi-criterion antenna positioning in indoor environments,” IEEE Trans. Magnetics, vol. 49, no. 5, pp. 1645-1648, 2013.
    [4] S. K. Mylonas, D. G. Stavrakoudis, J. B. Theocharis, and P. A. Mastorocostas, “Classification of remotely sensed images using the genesis fuzzy segmentation algorithm,” IEEE Trans. Geoscience and Remote Sensing, vol. 53, no. 10, pp. 5352-5376, 2015.
    [5] R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “OpenAirInterface-an effective emulation platform for LTE and LTE-Advanced,” Ubiquitous and Future Networks (ICUFN), Shanghai, China, July 8-11, 2014, pp. 127-132.
    [6] H. Gao, W. B. Xu, J. Sun, and Y. L. Tang, “Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm,” IEEE Trans. Instrumentation and Measurement, vol. 59, no. 4, pp. 934-946, 2010.
    [7] C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 3, pp. 627-646, 2012.
    [8] M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geoscience and Remote Sensing, vol. 30, no. 1, pp. 2-27, 1992.
    [9] T. Talib, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.
    [10] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, and T. Braun, “Network slices toward 5G communications: slicing the LTE network,” IEEE Communications Magazine, vol. 55, no. 8, pp. 146-154, 2017.
    [11] D. Boviz, C. S. Chen, and S. Yang, “Effective design of multi-user reception and fronthaul rate allocation in 5G cloud RAN,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8 pp. 1825-1836, Aug. 2017.
    [12] C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim, “5G C-RAN architecture: a comparison of multiple optical fronthaul networks,” Optical Network Design and Modeling (ONDM), Budapest, Hungary, May 15-17, 2017.
    [13] G. Mountaser, M. L. Rosas, T. Mahmoodi, and M. Dohler, “On the feasibility of MAC and PHY split in Cloud RAN,” Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, March 19-22, 2017.
    [14] H. J. Son, and M. M. Do, “Mobile network architecture for 5G era - new C-RAN architecture and distributed 5G core,” Oct. 6, 2015.
    [15] Y. J. Zheng, H. F. Ling, J. Y. Xue, and S. Y. Chen, “Population classification in fire evacuation: a multiobjective particle swarm optimization approach,” IEEE Trans. Evolutionary Computation, vol. 18, no. 1, pp. 70-81, 2014.
    [16] “Home·Wiki·oai/ openairinterface5G·Gitlab,”
    [17] X. Wei, H. Liu, Z. Geng, K. Zheng, R. Xu, Y. Liu, and P. Chen, “Software defined radio implementation of a non-orthogonal multiple access system towards 5G,” IEEE Access, vol. 4, pp. 9604-9613, Dec. 9, 2016.
    [18] F. Kaltenberger, R. Knopp, M. Danneberg, and A. Festag, “Experimental analysis and simulative validation of dynamic spectrum access for coexistence of 4G and future 5G systems,” Networks and Communications (EuCNC), Paris, France, June 29-July 2, pp. 497-501.
    [19] C. Y. Yeoh, M. H. Mokhtar, A. A. A. Rahman, and A. K. Samingan, “Performance study of LTE experimental testbed using OpenAirInterface,” Advanced Communication Technology (ICACT), Pyeongchang, South Korea, Jan. 31-Feb. 3, 2016, pp. 617-622.
    [20] F. Kaltenberger, R. Knopp, N. Nikaein, D. Nussbaum, L. Gauthier, and C. Bonnet,, “OpenAirInterface: open-source software radio solution for 5G,” European Conference on Networks and Communications (EuCNC), Paris, France, June 29-July 2, 2015.
    [21] D. Muirhead, M. A. Imran, and K. Arshad, “Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks,” IEEE Access, vol. 3, pp. 1562-1572, Aug. 27, 2015.
    [22] P. K. Mishra, S. Pandey, and S. K. Biswash, “Efficient resource management by exploiting D2D communication for 5G networks,” IEEE Access, vol. 4, pp. 9910-9922, Sep. 7, 2016.
    [23] S. Schwarz, and M. Rupp, “Exploring coordinated multipoint beamforming strategies for 5G cellular, ” IEEE Access, vol. 2, pp. 930-946, Aug. 29, 2014.
    [24] “ShareTechnote,” http://www.sharetechnote.com/
    [25] “LTE University,” http://lteuniversity.com/

    無法下載圖示 全文公開日期 2024/01/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE