簡易檢索 / 詳目顯示

研究生: 吳育智
Yu-chih Wu
論文名稱: 利用共軛匹配、菲諾及無偏壓預失真技術設計低失真射頻功率放大器
Design of Low Distortion RF Power Amplifier Using Complex-Conjugate Matching, Fano Methods and Bias-Free Predistorter
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 張勝良
Sheng-Lyang Jang
黃進芳
Jhin-Fang Huang
陳國龍
Kuo-Lung Chen
溫俊瑜
Jiun-Yu Wen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 109
中文關鍵詞: 功率放大器預失真電路線性化預失真技術
外文關鍵詞: power amplifier, bias-free, predistorter, linearizer, predistortion
相關次數: 點閱:189下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出使用不同的匹配網路方法設計2瓦、10瓦功率放大器並結合無偏壓預失真電路,用以改善IMD (Intermodulation distortion) ,提高放大器可使用輸出功率。我們首先討論功率放大器在通訊系統中的重要性,接著說明功率放大器的非線性效應的產生,以及目前常使用的線性化技術及基本觀念。最後使用FUJITSU 以及CREE 生產的功率晶體FLL177ME和CGH40010F來設計功率放大器並結合預失真電路來做線性度的改善。
    在設計階段之初,我們會使用一個符合規格的功率晶體作為設計的關鍵元件,根據該元件的特性,使用不同設計匹配網路方法做為2瓦、10瓦功率放大器合成的基礎 (Complex Conjugate method and Fano method ),接著建立符合規格功率放大器的匹配網路。
    最後,透過一個雙向平行蕭特基二極體且並聯π型衰減器的無偏壓預失真電路進行功率放大器線性度的改善,此電路被製作在UL2000板材,介電係數為2.38,板厚為0.76 mm PCB (printed circuit board) 上,大小約為1.8 mm x 2 mm,此電路具有尺寸小、低損耗和良好的反射損耗,為了驗證提出方法有效性,我們使用輸入頻率2.6 GHz且頻寬5 MHz雙音訊號來做測試,並將量測數據與理論做比對,在IM3 -30 dBm的標準下, 2瓦功率放大器可用輸出功率範圍從18.5 dBm延伸到23.5 dBm,有約5 dB的輸出功率線性度改善。


    This study proposes different matched methods to design 2W and 10W RF microwave power amplifier combining with a bias-free predistorter to improve IMD (Intermodulation distortion) and raise usable output power. First, we discuss the importance of RF microwave power amplifier in communication system. Then, we illustrate nonlinear effect generated by power amplifier and the basic concept of linearizer technology. Last of all, this research adopts FUJITSU and CREE produced by transistor (FLL177ME,CGH40010F) to design power amplifier connected with a bias-free predistorter for improvement of linearity.
    In the initial design phase, we utilize a transistor with standard specification as the key component. According to the component’s property, Complex Conjugate method and Fano method is used to design the 2W and 10W power amplifiers, and the matched network meeting the power amplifier’s standard-specification is set up as well.
    A bias-free predistorter composing of anti-parallel diodes, and a π type attenuator is adopted to improve IM3 of power amplifier, which is fabricated on UL 2000 substrates with dielectric constant = 2.38, loss tangent = 0.0022, and thickness h = 0.762 mm. The overall size of the predistorter is set to be 1.8mm x 2mm, with the characteristics of small-size, low insertion loss, and good return loss. To verify the effectiveness of the proposed methods, we conduct two-tone test with input frequency as 2.6 GHz and the spacing as 5 MHz. After that, measured results are presented to illustrate the validity of the proposed design method. By adding the predistorter to the amplifier can effectively improve IM3 of 2-watt power amplifier’s output power from 18.5 dBm to 23.5 dBm.

    論文摘要 I Abstract II 誌謝 IV Contents VI List of Figures VIII List of Tables XIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey on High-power Amplifiers 3 1.3 Design of Method 4 1.4 Distortion Implementation 5 1.5 Organization of Thesis 6 Chapter 2 Basic Theory 8 2.1 The Transmission (ABCD) Matrix 8 2.2 Microstrip Line 9 2.3 TRL Technique Theory 12 2.3.1 Through, Reflect, Line calibrator 14 2.4 Power Amplifier Classes 16 2.4.1 Class A 18 2.4.2 Class B 19 2.4.3 Class AB 20 2.4.4 Class C 20 2.4.5 1-dB Compression Point 21 2.4.6 Intermodulation Distortion 22 2.5 Linearization Methods 26 2.5.1 Feedforward 26 2.5.2 Feedback 27 2.5.3 Adaptive Baseband Predistortion 29 2.5.4 Predistortion 30 Chapter 3 Design of 2-Watt Power Amplifier 32 3.1 Stability 32 3.1.1 Unconditional Stability 33 3.1.2 Conditional Stability 34 3.1.3 Stability Circle 34 3.2 Complex Conjugate Matched 36 3.4 Design Approach 38 3.4.1 Extraction the S Parameter 39 3.4.2 Stability Consideration 44 3.4.3 Matching Network Using Complex-Conjugate Matched Mehod 45 3.4.4 Simulation and Measurement Results 48 Chapter 4 Design of 10-Watt Power Amplifier Using FANO Transfer Function 55 4.1 Fano Method 55 4.2 Design Approach 57 4.2.1 DC Bias Condition 58 4.2.1 Load and Source Pull Analysis 59 4.2.2 Matching Network 61 4.3 Simulation and Measurement Results 67 Chapter 5 Predistortion Linearizer 72 5.1 The Concept of Predistorter 72 5.2 Anti-parallel Schottky Diode Analysis for Predistorter 75 5.3 The Phase and Amplitude Distortion of Predistorter 77 Chapter 6 Experimental Results 82 6.1 The Linearity Measurement 82 Chapter 7 Conclusion 87 7.1 Conclusion 87 7.2 Future work 88 APPendix A The Data Sheet of FLL177ME and CGH40010F 89 Reference 91

    [1]Hiroaki Deguchi, Norihiko Ui, Kaname Ebihara, Kazutaka Inoue, Norihiro Yoshimura and Hidenori Takahashi, “A 33W GaN HEMT Doherty Amplifier with 55% Drain Efficiency for 2.6GHz Base Stations ”Microwave Symposium Digest, 2009. MTT '09. IEEE MTT-S International, 1273 - 1276
    [2]loon Hyung Kim, Sung lun Lee, lae Ho lung, and Chul Soon Park*, “60% High-Efficiency 3G LTE Power Amplifier with Three-level Delta Sigma Modulation Assisted By Dual Supply Injection” IEEE Microwave Theory and Techniques, Vol. 54 , Issue: 6 pp. 2713 – 2722, June 2006
    [3]H. M. Park, D. H. Baek, K. I. Jeon, and S. Hong, “A predistortion linearizer usingenvelope-feedback technique with simplified carrier cancellation scheme for class-A and class-AB power amplifiers,” IEEE Trans. Microw. Theory Tech., vol.48, no. 6, pp.898-904, June 2000.
    [4]V. Steel, D. Scott, and S. Ludvik, “A 6-18 GHz, high dynamic range MMIC amplifier using a feedforward technique,” IEEE MTT-S Int. Microwave Symp.Digest, pp.911-914,1990.
    [5]L. Roselli, V. Borgioni,F. Zepparelli, M. Comez, P. Faccin, and A. Casini,“Predistortion circuit design for II and III order simultaneous linearization in multiservice telecommunications apparatuses,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3,2002.
    [6]Seyed Aidin Bassam, Member, IEEE, Mohamed Helaoui, Member, IEEE, and Fadhel M. Ghannouchi, Fellow, IEEE, “2-D Digital Predistortion (2-D-DPD) Architecture for Concurrent Dual-Band Transmitters” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011.
    [7]C.H. Tseng and C. L. Chang, “Improvement of Return Loss Bandwidth of Balanced Amplifier Using Metamaterial-Based Quadrature Power Splitters,” IEEE Microwave and Wireless Components Letters, vol. 18, No. 4, April 2008.
    [8]L. Wu, U. Basaran, I. Dettmann, M. Berroth, T. Bitzer, and A. Pascht, “A Broadband High Efficiency Class-AB LDMOS Balanced Power Amplifier,” IEEE Microwave Conference, vol. 2, Oct. 2005.
    [9]S. Seo, D. Pavlidis, and J. S. Moon, “A wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier for transceiver front-ends,” Eur. Gallium Arsenide Compound Semiconductor Application (EGAAS) Symposium. Digest, pp. 225–228, 2005.
    [10]K. L. Deng, T. W. Huang, and H. Wang, “Novel high gain and broadband GaAs MMIC distributed amplifiers with traveling-wave gain stages,” IEEE Radio Frequency Integrated Circuits Symposium, 8-10, pp.325 – 328, June 2003.
    [11]X. Jiang, and A. Mortazawi, “A Broadband Power Amplifier Design Based on the Extended Resonance Power Combining Technique,” IEEE Symposium Digest, MTTS-International, 12-17, pp.835 – 839, June 2005.
    [12]B. Y. Banyamin, and M. Berwick, “Analysis of the performance of four cascaded single-stage distributed amplifiers,” IEEE Transaction on Microwave Theory and Techniques, vol. 48, pp. 2657-2663, Dec. 2000.
    [13]Chung, Y.; Cai, S.; Lee, W.; Lin, Y.; Wen, C.P.; Wang, K.L.; Itoh, T. “High power wideband AlGaN/GaN HEMT feedback amplifier module with drain and feedback loop inductances” Institution of Engineering and Technology, Vol.37 pp.1199 - 1200 ,2001.
    [14]Kumar Narendra, Lokesh Anand, Pragash Sangaran, M.F. Ain, and S.I.S. Hassan“1-W high linear broadband RF power amplifier with Certesian feedback for TETRA modulation” IEEE Microwave Theory and Techniques Society, Vol.9 pp.140 – 147 ,2008.
    [15]“Evolved Universal Terrestrial Radio Access; User Equipment radio transmission and reception” ,ETSI TS 136 101 V10.1.1,January,2011
    [16]Seung- June Yi, Byung-Sung Kim, Sangwook Nam, “Design of high efficiency power amplifier using DC and small-signal S-parameter measurements” Asia Pacific Microwave Conference ,vol.2 ,pp. 513 - 516 ,Dec 1997.
    [17]Dawson, D.E. Closed-Form Solutions for the Design of Optimum Matching Networks, IEEE Microwave Theory and Techniques,Vol.57pp.121 -129, Jan.2009.
    [18]D. M. Pozar, Microwave Engineering. New York: Wiley, 1998.
    [19]Fujitsu microelectronics, LTD. The data sheet of FLL177ME, Edition 1.1 July 1999.
    [20]Cree. Microelectronics,The data sheet of CGH40010F ,Rev3.2,2006-2012.
    [21]張峻源,碩士論文「應用於功率放大器之無偏壓預失真電路設計」,國立台灣科技大學,2011.
    [22]姜禮翎,碩士論文「無偏壓預失真電路設計」,國立台灣科技大學,2010.
    [23] Kazuhisa Yamauchi, Hifumi Noto, Satoru Ishizaka, Yoshihiro Hamamatsu, Masatoshi Nakayama, and Yoji Isota, “Series Anti-Parallel Diode Linearizer for Class-B Power Amplifiers with a Gain Expansion”, Proceedings of Asia-Pacific Microwave Conference, 2006.
    [24]I. J. Bahl and D. K. Trivedi, “A Design’s Guide to Microstrip Line” Microwave, May, 1977.
    [25]K. C. Gupta, R. Grag and I. J. Bahl, Microstrip Lines and Slot lines, Artech House, Dedham, Mass.
    [26]G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design. Prentice-hall, Upper Saddle River, New Jersey: 1997.
    [27]Woo, Y. Y. “Adaptive Digital Feedback Predistortion Technique for Linearizing Power Amplifiers” IEEE Microwave Theory and Techniques,vol.55,pp.932-940,
    May 2007.
    [28]SungWon Chung .“Energy-Efficient Digital Predistortion With Lookup Table Training Using Analog Cartesian Feedback” IEEE Microwave Theory and Techniques,vol.56,pp.2248-2258,Oct.2008
    [29]S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA:
    Artech House, 1999, ch. 7
    [30] P. B. Kenington, High-Linearity RF Amplifier Design. Norwood, MA: Artech
    House, 2000.
    [31] S. C. Cripps, Advanced Techniques in RF Power Amplifier Design. Boston, MA:Artech House, 2002
    [32] PST Inc., “High Power Feed Forward Amplification Systems,” Microwave
    Journal, Feb.1994, pp. 128-133.
    [33] Cripps, S., RF Power Amplifiers for Wireless Communications, Boston: Artech House, 1999.
    [34] Jeckeln, E., “An L Band Adaptive Digital Predistorter for Power Amplifiers using Direct IQ Modem,” IEEE MTT-S Digest, pp.719-722 ,May 1998,.
    [35] H. Matsubara1, K. Ishihara2, N. Miyadai2, and T. NojimaA Novel 3rd-and-5th-Order Predistortion Circuit for 2 GHz Band W-CDMA Amplifier Proceedings of Asia-Pacific Microwave Conference 2007
    [36] Sangwon Ko“ A Linearized Cascode CMOS Power Amplifier” IEEE Wireless and Microwave Technology Conference, 2006.
    [37] R. M. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances,” J. Franklin Inst., vol. 249, pp. 57–83, 139–154, Jan.–Feb. 1950.
    [38] H. W. Bode, Network Analysis and Feedback Amplifier Design. New York: Van Nostrand, 1945, Huntington, NY: Krieger, 1975, 276–282,363-367.
    [39] G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964, Norwood, MA: Artech House, 1980, pp.3–5, 120-130

    QR CODE