簡易檢索 / 詳目顯示

研究生: 洪昱群
Yu-Chun Hung
論文名稱: 偏光相機的色彩特性分析
Color Characterization Analysis of Polarization Cameras
指導教授: 林宗翰
Tzung-Han Lin
口試委員: 孫沛立
Pei-Li Sun
歐立成
Li-Chen Ou
胡國瑞
Kuo-Jui Hu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 色彩特性描述多項式迴歸法偏光相機線性偏振度色度偏移
外文關鍵詞: Colorimetric Characterization, Polynomial Regression, Polarization Camera, Degree of Linear Polarization (DoLP), Chromaticity Shift
相關次數: 點閱:242下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位相機作為影像工具在各個領域中扮演著重要角色,然而在色彩準確度方面仍存在挑戰。本研究旨在探討搭載IMX250MYR偏振感測器的偏光相機在色彩準確度方面的表現,並與一般彩色相機進行比較。本研究通過實驗設計,分析了兩種相機在非偏振光源和偏振光源下拍攝的影像,並著重研究了色彩特性和線性偏振度之間的關聯性。
    在實驗一中,我們比較了不同的色彩映射方法,結果顯示3×11擴展矩陣具有最佳效果。然而,使用偏光片獲取的正交偏光影像可能對色彩量測準確性產生影響,需要權衡色差結果和消除鏡面反射、眩光效果之間的關係。
    在實驗二中,我們研究了偏振光源對相機色彩特性的影響。結果顯示,偏振光源的加入導致不同偏振角度的彩色影像產生不同的色度偏移趨勢。具體而言,90°和0°彩色影像展現了相反的色度偏移趨勢,而45°和135°彩色影像則具有相似的色度偏移趨勢但幅度較小。此外,我們也探討了線性偏振度與色彩資訊的關聯性,結果顯示明度資訊與線性偏振度較為相關,而彩度資訊則不相關。
    在實驗三中,我們進一步研究了高光澤度樣本對相機色彩特性的影響。結果顯示,由於自製光澤度測試樣本的不均勻色塊影響,兩個光澤度樣本幾乎沒有保留偏振光源提供的線性偏振狀態。此外,我們觀察到物體表面狀態和光源變化對線性偏振度變化和色度偏移具有相關性。
    綜合研究結果,本研究提供了對偏光相機色彩特性的深入研究和相關討論。實驗結果顯示偏振光源、色彩映射方法和樣本差異等因素對相機色彩的影響,並探討了線性偏振度和色彩資訊之間的關聯性。這些結果對於偏光攝影技術的應用和相關領域的研究可能有所貢獻。


    This study investigated the color accuracy performance of a polarization camera equipped with the IMX250MYR polarization sensor and compared it with a conventional color camera. The experiment examined images captured under non-polarized and polarized light sources, and focused on the relationship between color characteristics and linear polarization degree.
    In experiment 1, the results show that the 3×11 matrix performed the best after color mapping. However, using a polarizer to capture cross polarized images may affect color measurement accuracy, and may require a trade-off between color differences and the elimination of specular reflection as well as glare effects.
    In experiment 2, the introduction of polarized light sources leaded to different chromaticity shifts in images under different polarization angles. Specifically, the 90° and 0° color images exhibit opposite chromaticity shift trends, while the 45° and 135° color images show similar but smaller shifts. Luminance information was found to be more related to linear polarization degree, while chromaticity information shows less correlation.
    In experiment 3, the impact of high glossiness samples on camera color characteristics was examined. Due to the uneven color blocks of the self-made glossiness test samples, the linear polarization state provided by the polarized light source was difficult to retain in both glossiness samples. The surface condition of objects and changes in light sources were observed to be correlated with variations in linear polarization degree and chromaticity shifts.
    In conclusion, this study provides insights into the color characteristics of polarization cameras. The findings contribute to the understanding of the influence of polarized light sources, color mapping methods, and sample variations on camera color accuracy.

    論文摘要 II ABSTRACT III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 論文架構 3 第2章 原理與文獻探討 4 2.1 色彩量測標準 4 2.1.1 CIE標準光源 4 2.1.2 色匹配函數與三刺激值 5 2.1.3 均勻色彩空間 7 2.1.4 CIE色差公式 9 2.1.5 CIE推薦的反射量測幾何條件 11 2.2 用於數位相機色彩特性描述的色彩映射方法探討 12 2.2.1 線性迴歸方法 13 2.2.2 多項式迴歸方法 15 2.2.3 基於最小平方法衍生的色彩映射方法 15 2.3 數位相機獲取的偏光影像 18 2.3.1 光的偏振作用 18 2.3.2 光的偏振描述 20 2.3.3 偏光相機 21 2.4 偏光攝影技術在色彩領域的相關應用 22 第3章 研究方法 27 3.1 影像獲取裝置設計 27 3.1.1 光源模組設計 29 3.1.2 相機模組設計 30 3.2 裝置影像獲取流程 32 3.2.1 相機與裝置系統校正 34 3.2.2 影像色彩映射方法 36 3.2.3 影像資訊獲取流程 37 第4章 實驗設計 40 4.1 實驗樣本基準測量 40 4.2 實驗條件配置 41 4.3 實驗一「色彩映射迴歸矩陣性能比較」 43 4.4 實驗二「偏振光源對相機色彩特性影響」 44 4.5 實驗三「具光澤樣本對相機色彩特性影響」 45 第5章 實驗結果與分析 48 5.1 實驗一「色彩映射迴歸矩陣性能比較」結果 48 5.2 實驗二「偏振光源對相機色彩特性影響」結果 52 5.2.1 偏振光源對相機色彩的影響 52 5.2.2 線性偏振度與色彩資訊的關係 58 5.2.3 正交偏光影像的色彩映射準確性探討 63 5.3 實驗三「具光澤樣本對相機色彩特性影響」結果 66 5.3.1 高光澤度樣本的光源改變色度偏移 66 5.3.2 低光澤度樣本的光源改變色度偏移 68 5.3.3 光澤度樣本實驗的相關討論 70 第6章 結果與討論 72 參考文獻 73 附錄 76 附錄一、偏光相機規格 76 附錄二、彩色相機規格 77 附錄三、Lucideon無光澤陶瓷白板校正報告 79 附錄四、高光澤度樣本圖 83 附錄五、低光澤度樣本圖 84

    [1] Lucid Vision Labs, Inc., “Going Polarized – Polarization Adds A New Perspective To The Imaging Industry,” 2023, [Online]. Available: https://thinklucid.com/polarization–white–paper/. [Accessed: 09-Aug-2023].
    [2] “Colorimetry, 3rd edition | CIE 15:2004,” International Commission on Illumination, 2004, ISBN: 9783901906336.
    [3] ICC, “White Paper #6: ICC version 2 & version 4 display profile differences,” International Color Consortium, 2005 [Online].
    [4] A. Kaarna, P. Toivanen, and T. Kuparinen, “Chromaticity Difference from Surfaces Defined from MacAdam Ellipses,” in Conference on Colour in Graphics, Imaging, and Vision, vol. 2002, no. 1, 2002.
    [5] D. L. MacAdam, “Visual Sensitivities to Color Differences in Daylight,” Journal of the Optical Society America, vol. 42, no. 5, May 1942, doi: 10.1364/JOSA.32.000247.
    [6] B. C. K. Ly, E. B. Dyer, J. L. Feig et al., “Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement,” Journal of Investigative Dermatology, vol. 140, no. 1, pp. 3–12.e1, 2020, doi: 10.1016/j.jid.2019.11.003.
    [7] M. M. Perez, R. Ghinea, L. J. Herrera et al., “Dental ceramics: A CIEDE2000 Acceptability Thresholds for Lightness, Chroma and Hue Differences,” Journal of Dentistry, vol. 39, pp. e37–e44, 2011, doi: 10.1016/j.jdent.2011.09.007.
    [8] O. E. Pecho, R. Ghinea, R. Alessandretti et al., “Visual and Instrumental Shade Matching Using CIELAB and CIEDE2000 Color Difference Formulas,” Dental Materials, vol. 32, no. 1, pp. 82–92, 2016, doi: 10.1016/j.dental.2015.10.015.
    [9] C. Gómez–Polo, M. Portillo Muñoz, M. C. Lorenzo Luengo et al., “Comparison of the CIELab and CIEDE2000 Color Difference Formulas,” The Journal of Prosthetic Dentistry, vol. 115, no. 1, pp. 65–70, 2016, doi: 10.1016/j.prosdent.2015.07.001.
    [10] M. Melgosa, “CIE94, History, Use, and Performance,” in Encyclopedia of Color Science and Technology, pp. 1–5, 2015, doi: 10.1007/978-1-4419-8071-7_13.
    [11] M. R. Luo, G. Cui and B. Rigg, “The Development of the CIE 2000 Colour–Difference Formula: CIEDE2000,” Color Research & Application, vol. 26, no. 5, pp. 340–350, 2001, doi: 10.1002/col.1049.
    [12] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 Color–difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations,” Color Research & Application, vol. 30, no. 1, pp. 21–30, 2005, doi: 10.1002/col.20070.
    [13] “A Framework for the Measurement of Visual Appearance | CIE 175:2006,” International Commission on Illumination, 2006, ISBN: 9783901906527.
    [14] P. C. Hung, “Colorimetric Calibration in Electronic Imaging Devices Using a Look–up–table Model and Interpolations,” Journal of Electronic Imaging, vol. 2, no. 1, pp. 53–61, 1993, doi: 10.1117/12.132391.
    [15] C. Gatta, A. Rizzi, and D. Marini, “Local Linear LUT Method for Spatial Colour–correction Algorithm Speed–up,” IEE Proceedings – Vision, Image and Signal Processing, vol. 153, no. 3, pp. 357–363, Jun. 2006, doi: 10.1049/ip–vis:20050279.
    [16] P. M. Hubel, G. Finlayson, J. Holm et al., “Matrix Calculations for Digital Photography,” Color and Imaging Conference, pp. 105–111, 1997.
    [17] G. Hong, M. R. Luo, and P. A. Rhodes, “A Study of Digital Camera Colorimetric Characterization Based on Polynomial Modeling,” Color Research & Application, vol. 26, no. 1, pp. 76–84, 2001, doi: 10.1002/1520–6378(200102)26:1<76::AID–COL8>3.0.CO;2–3.
    [18] B. Funt and P. Bastani, “Irradiance–independent Camera Color Calibration,” Color Research & Application, vol. 39, no. 6, pp. 540–548, 2014, doi: 10.1002/col.21849.
    [19] G. D. Finlayson, M. Mackiewicz, and A. Hurlbert, “Color Correction Using Root–Polynomial Regression,” IEEE Transactions on Image Processing, vol. 24, no. 5, pp. 1460–1470, 2015, doi: 10.1109/TIP.2015.2405336.
    [20] V. Cheung, S. Westland, D. Connah, and C. Ripamonti, “A Comparative Study of the Characterisation of Colour Cameras by Means of Neural Networks and Polynomial Transforms,” Coloration Technology, vol. 120, no. 1, pp. 19–25, 2004, doi: 10.1111/j.1478–4408.2004.tb00201.x.
    [21] M. Amani, H. Falk, O. D. Jensen et al., “Color Calibration on Human Skin Images,” in International Conference on Computer Vision Systems, pp. 211–223, 2019, doi: 10.1007/978–3–030–34995–0_20.
    [22] M. Anderson, R. Motta, S. Chandrasekar et al., “Proposal for a Standard Default Color Space for the Internet – sRGB,” in Color and Imaging Conference, pp. 238–245, 1996, doi: 10.2352/CIC.1996.4.1.art00061.
    [23] Imatest, “Gamma, Tonal Response Curve, and related concepts,” [Online]. Available: https://imatest.atlassian.net/wiki/spaces/KB/pages/11416142124/Gamma+Tonal+Response+Curve+and+related+concepts. [Accessed: 09-Aug-2023].
    [24] J. S. Tyo, D. L. Goldstein, D. B. Chenault et al., “Review of passive imaging polarimetry for remote sensing applications,” Applied Optics, vol. 45, no. 22, pp. 5453–5469, 2006, doi: 10.1364/AO.45.005453.
    [25] G. Horváth and D. Varju, Polarized Light in Animal Vision: Polarization Patterns in Nature. Springer Science & Business Media, 2004, doi: 10.1007/978-3-662-09387-0.
    [26] E. M. Soliman and A. F. Abdelgawad, “Polarization of Light for Safe Driving,” in The International Undergraduate Research Conference, The Military Technical College, pp. 90–90, 2017 doi: 10.21608/IUGRC.2017.90950.
    [27] B. Hüttner, “On Brewster’s Angle of Metals,” Journal of Applied Physics, vol. 78, no. 7, pp. 4799–4801, 1995, doi: 10.1063/1.359763.
    [28] R. C. Olsen, M. Eyler, A. M. Puetz et al., “Initial Results and Field Applications of a Polarization Imaging Camera,” in Polarization Science and Remote Sensing IV, SPIE, pp. 121–130, 2009, doi: 10.1117/12.825405.
    [29] E. Kim, T. Son, Y. Lee et al., “Development of Polarization Dental Imaging Modality and Evaluation of its Clinical Feasibility,” Journal of Dentistry, vol. 40, pp. e18–e25, 2012, doi: 10.1016/j.jdent.2012.04.013.
    [30] T. Ono, Y. Kondo, L. Sun et al., “Degree of Linear–polarization–based Color Constancy,” in IEEE/CVF International Conference on Computer Vision, pp. 19740–19747, 2021, doi: 10.1109/CVPR52688.2022.01912.
    [31] T. Liu, Z. Guan, X. Li et al., “Polarimetric Underwater Image Recovery for Color Image with Crosstalk Compensation,” Optics and Lasers in Engineering, vol. 124, p. 105833, 2020, doi: 10.1016/j.optlaseng.2019.105833.
    [32] D. Pascale, “RGB coordinates of the Macbeth ColorChecker,” The BabelColor Company, 2006. [Online].
    [33] ICC, “White Paper #3: ICC Recommendations for Color Measurement,” International Color Consortium, 2004 [Online].

    QR CODE