簡易檢索 / 詳目顯示

研究生: 劉子詣
Tzu-Yi Liu
論文名稱: 針對Bayer彩色濾波陣列影像之基於亮度修正的創新與最佳化彩度抽樣
Novel and Optimal Luma Modification-Based Chroma Downsampling for Bayer Color Filter Array Images
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 蔡文祥
顏嗣鈞
李同益
鍾國亮
郭景明
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 34
中文關鍵詞: Bayer彩色濾波陣列影像區塊失真彩度抽樣編碼解馬賽克多元線性回歸亮度修正品質品質位元率權衡放大
外文關鍵詞: Bayer CFA image, block-distortion, chroma downsampling, coding, demosaicking, multiple linear regression, luma modification, quality, quality-bitrate tradeoff, upsampling
相關次數: 點閱:209下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bayer彩色濾波陣列被廣泛使用在現代的數位彩色相機中,且捕捉到的影像我們稱之為Bayer彩色濾鏡陣列影像。彩度抽樣在編碼系統中是一個必須且重要的步驟。在這篇論文中,一個針對Bayer彩色濾波陣列影像之基於亮度修正的創新與最佳化彩度抽樣方法LMCD被提出。對每一個轉換的2x2YUV區塊,抽樣的(U, V)值和修正的亮度值會透過提出的LMCD方法最佳化地決定,且在所有16種不同的LMCD變化中修正兩個亮度值的變化中有最好的品質。基於Kodak和IMAX影像資料集,在高效率視頻編碼軟體(版本HM-16.18)、多功能影像編碼軟體(版本VTM-8.0)和JPEG平台上,詳盡的實驗數據顯示,相對於傳統和最先進的彩度抽樣方法,使用我們的最佳化LMCD方法對於重建的影像有實質性的品質和品質位元率權衡的優點。


    The Bayer color filter array (CFA) pattern has been widely used in modern digital color cameras, and the captured image is called the Bayer CFA image I^{Bayer}. Chroma downsampling is a necessary and important step in the coding system. In this thesis, a novel and optimal luma modification-based chroma downsampling (LMCD) method is proposed for I^{Bayer}. For each converted 2x2 YUV block, the downsampled (U, V)-pair and the modified luma values by the proposed LMCD method can be optimally determined, and the optimal variant of our LMCD method associated with the two modified luma values has the best quality among all sixteen variants of LMCD. Based on the Kodak and IMAX datasets, on the High Efficiency Video Coding (HEVC) platform HM-16.18, the Versatile Video Coding (VVC) platform VTM-8.0, and the Joint Photographic Experts Group (JPEG) platform, the comprehensive experimental data showed the substantial quality and quality-bitrate tradeoff merits of the reconstructed images by our optimal LMCD method relative to the traditional and state-of-the-art chroma downsampling methods.

    指導教授推薦書 論文口試委員審定書 中文摘要 Abstract in English Contents List of Figures List of Tables 1 Introduction 1.1 Related Work 1.2 Motivation 1.3 Contributions 2 The Proposed Optimal Luma Modification-Based Chroma Downsampling Method 2.1 The Proposed Bilinear Interpolation-Based Upsampling Process at the Server Side 2.2 Analysis and Comparison among the Sixteen Variants of LMCD 2.2.1 LMCD_0 2.2.2 LMCD_1 2.2.3 LMCD_2 2.2.4 LMCD_3 and LMCD_4 2.2.5 Quality Comparison among the Sixteen Variants of LMCD 2.2.6 The Best Variant Selection and the Computational Complexity Discussion 3 Experimental Results 3.1 PSNR, CPSNR, SSIM, and FSIM Merits; Luma Mean-Preservation Effect 3.2 Quality-bitrate Tradeoff Merit and Time Comparison 4 Discussion and Concluding Remarks References APPENDIX: The Derivation of Eqs. (2.1)-(2.2)

    [1] B. E. Bayer, “Color imaging array,” U.S. Patent 3 971 065, Jul. 20, 1976.

    [2] H. Chen, M. Sun, and E. Steinbach, “Compression of Bayer-­pattern video sequences using adjusted chroma subsampling,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 12, pp. 1891-­1896, Dec. 2009.

    [3] K. L. Chung, J. S. Cheng, and H. B. Yang, “Novel quality­-preserving luma adaptation­-based chroma downsampling for color images using the multiple linear regression approach,” Technique Report, Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Sep. 2019.

    [4] K. L. Chung, Y. L. Lee, and W. C. Chien, “Effective gradient descent­-based chroma subsampling method for Bayer CFA images in HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 11, pp. 3281-­3290, Nov. 2019.

    [5] B. N. Datta, Numerical Linear Algebra and Applications, First ed. CA., USA: pp. 315-­324, 1995. Brooks/Cole Publishing Company.

    [6] HM­-16.18 Accessed: Jan. 2018. [Online]. Available: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.18/

    [7] IMAX True Color Image Collection. Accessed: Aug. 2014. [Online]. Available: http://www.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm

    [8] Joint Photographic Experts Group (JPEG). Available: https://github.com/thorfdbg/libjpeg

    [9] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation for color image demosaicking,” IEEE International Conference on Image Processing, pp. 2304-­2308, Sep. 2013.

    [10] Kodak True Color Image Collection. Accessed: Aug. 2014. [Online]. Available: https://www.math.purdue.edu/~lucier/PHOTO_CD/BMP_IMAGES/

    [11] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: A systematic survey,” Proceedings of the SPIE-­IS&T Electronic Imaging, Visual Communications and Image Processing, vol. 6822, pp. 68221J-68221J-­15, 2008.

    [12] X. Li and M. T. Orchard, “New edge-­directed interpolation,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1521-­1527, Oct. 2001.

    [13] C. H. Lin, K. L. Chung, and C. W. Yu, “Novel chroma subsampling strategy based on mathematical optimization for compressing mosaic videos with arbitrary RGB color filter arrays in H.264/AVC and HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 9, pp. 1722-1733, Sep. 2016.

    [14] T. L. Lin, Y. C. Yu, K. H. Jiang, C. F. Liang, and P. S. Liaw, “Novel chroma sampling methods for CFA video compression in AVC, HEVC and VVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 9, pp. 3167-­3180, Sep. 2020.

    [15] Y. Lu, S. Li, and H. Shen, “Virtualized screen: A third element for cloud-­mobile convergence,” IEEE Multimedia Magazine, vol. 18, no. 2, pp. 4–11, Feb. 2011.

    [16] R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance analysis,” IEEE Transactions on Consumer Electronics, vol. 51, pp. 1260-­1267, 2005.

    [17] M. Parmar and S. J. Reeves, “A perceptually based design methodology for color filter arrays,” IEEE International Conference on Acoustics Speech and Signal Processing, vol. 3, pp. 473­-476, 2004

    [18] W. Pu, M. Karczewicz, R. Joshi, V. Seregin, F. Zou, J. Sole, Y. C. Sun, T. D. Chuang, P. Lai, S. Liu, S. T. Hsiang, J. Ye, and Y. W. Huang, “Palette mode coding in HEVC screen content coding extension,” IEEE J. Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 4, pp. 420–432, Dec. 2016.

    [19] VTM-­8.0 Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM

    [20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error measurement to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-­612, Apr. 2004.

    [21] S. Wang, K. Gu, S. Ma, and W. Gao, “Joint chroma downsampling and upsampling for screen content image,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 9, pp. 1595-1609, Sep. 2016.

    [22] S. Yamanaka, “Solid state camera,” U.S. Patent 4 054 906, 1977.

    [23] W. J. Yang, K. L. Chung, W. N. Yang, and L. C. Lin, “Universal chroma subsampling strategy for compressing mosaic video sequences with arbitrary RGB color filter arrays in H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 4, pp. 591­-606, Apr. 2013.

    [24] Y. C. Yu, J. W. Jhang, X. Wei, H. W. Tseng, Y. Wen, and Z. Liu, “Chroma upsampling for YCbCr 420 videos,” IEEE International Conference on Consumer Electronics, pp. 163-­164, Jun. 2017.

    [25] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity index for image quality assessment,” IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378-­2386, Aug. 2011.

    [26] Y. Zhang, D. Zhao, J. Zhang, R. Xiong, and W. Gao, “Interpolation-­dependent image downsampling,” IEEE Transactions on Image Processing, vol. 20, no. 11, pp. 3291­-3296, Nov. 2011.

    [27] S. Zhu, M. Li, C. Chen, S. Liu, and B. Zeng, “Cross-­space distortion directed color image compression,” IEEE Transactions on Multimedia, vol. 20, no. 3, pp. 525­-538, Mar. 2018.

    QR CODE