簡易檢索 / 詳目顯示

研究生: 黃正鈞
Cheng-Chun Huang
論文名稱: 設計及製作不同光柵的分佈反饋半導體雷射及其與電致吸收調變器之積體化
Design and Fabrication of DFB Lasers with Different Grating Structure and Their Integration with Electroabsorption Modulators
指導教授: 李三良
San-Liang Lee
口試委員: 葉秉慧
Pinghui Sophia Yeh
任大為
Da-Wei Ren
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 分佈式反饋半導體雷射電致吸收
外文關鍵詞: DFB Laser, Electroabsorption
相關次數: 點閱:240下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為實現於下世代四百千億位元率(400G)位元率乙太網路協定網路標準介面,需要波長為1310 nm之高速雷射光源,本論文以含鋁的四元材料做為主動層材料,製作積體化分佈反饋式雷射與電致吸收調變器。積體化製作是為縮小元件體積且增加元件可靠度;因雙元件於同一波導傳輸,也可有效率降低耦合損耗;此積體化元件可達到高位元傳輸及低驅動電壓;積體化製作元件更可以大幅降低其製程成本及時間。由於上述優點,讓積體化電致吸收雷射光源成為高速光纖通訊系統相當關鍵的元件。
    本論文採用Matlab撰寫傳輸矩陣程進行光柵結構的分析與設計。先以傳輸矩陣探討不同光柵對於整體雷射的臨界增益及增益差值的影響,發現具部份式光柵的分佈反饋式雷射比起一般分佈反饋式雷射有較佳的增益差值,可以設計出具較佳單波長特性雷射元件。
    在實驗驗證方面,製作傳統與部份式光柵分佈反饋式雷射以進行雷射性能比較,量測兩種雷射結構的效能,並成功製作雷射與電致吸收器的積體化元件,量測不同長度的電致吸收器吸收頻譜,證實所採用材料可以具備有效的吸收調製特性。


    To realize the transceivers for next generation 400-Gb/s network interface in IEEE802.3ba Ethernet interface protocol, high-speed laser sources at 1310 nm wavelength are needed. This thesis design and fabricate distributed feedback lasers (DFB) and electroabsorption modulators (EAMs) using AlInGaAs material as the active layers. The objective of Integration is to reduce the component size and coupling loss. The EAM can transmit high data rate with low driving and modulation voltage. The integration can also reduce the manufacturing cost and time. The above-mentioned advantages make the integrated electroabsorption modulated laser (EML) a key component for high-speed optical communication systems.
    We analyze different grating structure by using Matlab programs. The threshold gain and gain difference of DFB lasers with different grating structures is calculated by using the transfer-matrix method. It is found that the partial grating DFB lasers have better gain difference than a standard DFB laser.
    The partial grating DFB lasers and standard DFB lasers based on AlInGaAs quantum wells are fabricated and tested for performance comparisons. We also fabricated the integrated EMLs and measure the electro-absorption characteristics of different EAM lengths. The results indicate that the AlInGaAs material structure can provide large electro-absorption characteristics.

    摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xiii 第一章 研究動機與元件技術介紹 1 1-1 前言 1 1-2 DFB雷射簡介 2 1-3 電致吸收器簡介 4 1-4 研究方向 5 第二章 基本理論與元件模擬分析 6 2-1 DFB雷射原理 6 2-2 電致吸收調變原理與積體化技術介紹 8 2-2-1 Franz-Keldysh 效應 9 2-2-2 量子侷限史塔克效應 10 2-2-3 積體化整合技術介紹 11 2-2-4 積體化整合技術選擇 16 2-3分佈反饋式雷射模擬與分析 17 2-3-1 分佈反饋式雷射模擬 17 第三章 元件製程步驟 27 3-1 光罩設計 28 3-2 製程流程 29 3-3 製程結果與討論 36 第四章 元件量測 44 4-1 傳統DFB雷射量測結果與討論 44 4-1-1 量測架構 44 4-1-2 AlInGaAs雷射元件之特性量測 46 4-1-3部份式光柵雷射元件之特性量測 49 4-2 穿透量測 52 4-2-1 穿透基本原理 53 4-2-2 穿透及吸收量測結果 54 4-3 電致吸收量測結果與討論 57 4-3-1 一般雷射利用ASE光源量測結果 57 4-3-2 AR/HR 雷射利用ASE光源量測結果與討論 63 4-3-3 AR/HR 雷射利用電致吸收抑制材料增益結果與討論 71 第五章 結論 80 5-1 成果與討論 80 5-2 未來研究方向 81 參考文獻 82

    [1] H. J. R. Dutton, Understanding optical communications, Prentice Hall PTR, New Jersey, 1998.
    [2] Y. Q. Luo, X. P. Zhou, F. Effenberger, X. J. Yan, G. K. Peng, Y. B. Qian, and Y. R. Ma, “Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” Journal Of Lightwave Technology, vol. 31, no. 4, pp. 587-593, Feb 15, 2013.
    [3] J. W. Raring, and L. A. Coldren, “40-Gb/s widely tunable transceivers,” IEEE Journal Of Selected Topics In Quantum Electronics, vol. 13, no. 1, pp. 3-14, Jan-Feb, 2007.
    [4] G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” Journal Of Lightwave Technology, vol. 14, no. 10, pp. 2367-2373, Oct, 1996.
    [5] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley and Sons, NY, 1995.
    [6] J. B. M. Boavida, J. A. P. Morgado, and C. A. F. Fernandes, “HR-AR coated DFB lasers with high-yield and enhanced above-threshold performance,” Optics And Laser Technology, vol. 43, no. 3, pp. 729-735, Apr, 2011.
    [7] H. Ishikawa, H. Soda, T. Watanabe, H. Sudo and K.Sato “Low-threshold current and high-efficiency operation of electro-absorption modulator/DFB laser light source with AR-HR coating” Semiconductor Laser Conference, vol. 1, no. 1, pp. 170–1, 1990.
    [8] A. Laakso, J. Karinen, J. Telkkala, and M. Dumitrescu, “The effect of facet reflections in index-coupled distributed feedback lasers with coated facets,” Optical And Quantum Electronics, vol. 42, no. 11-13, pp. 713-719, Oct, 2011.
    [9] J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, “The Design and Assessment of λ/4 Phase-Shifted DFB Laser Structures” IEEE Journal of Quantum Electronics, vol. 25, no. 6, pp. 1261-1279, JINE. 1989.
    [10] 盧廷昌, 王興宗, 「半導體雷射技術」,五南圖書出版公司,民國99年
    [11] S. G. Carter, V. Birkedal, C. S. Wang, L. A. Coldren, A. V. Maslov, D. S. Citrin, and M. S. Sherwin, “Quantum Coherence in an Optical Modulator,” Science, vol. 310, no. 5748, pp. 651-653, Oct, 2005.
    [12] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent Optical Spectroscopy of a Strongly Driven Quantum Dot,” Science, vol. 317, no. 5840, pp. 929-932, Aug, 2007.
    [13] D. A. B.Miller, D. S. Chemla, and T. C. Damen, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect,” Physical Review Letters, vol. 53, no. 22, pp. 2173-2176, 1984.
    [14] 吳奇璋,分佈反饋式雷射與行波式電致吸收調變器積體化元件製作,碩士論文,國立台灣科技大學,民國98年。
    [15] B. O. Seraphin, and N. Bottka, “Franz-Keldysh Effect of the Refractive Index in Semiconductors,” Physical Review, vol. 139, no. 2A, pp. A560-A565, 07/19/, 1965.
    [16] W. Kobayashi, K. Tsuzuki, Y. Shibata, T. Yamanaka, Y. Kondo, and F. Kano, “10-Gb/s, 80-km SMF Transmission From 0 to 80oC by Using L-Band InGaAlAs MQW Electroabsorption Modulated Laser With Twin Waveguide Structure,” Journal of Lightwave Technology, vol. 27, no. 22, pp. 5084-5089, 2009.
    [17] H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-GHz bandwidth,” IEEE Photonics Technology Letters, vol. 13, no. 9, pp. 954-956, Sep, 2001.
    [18] W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, and F. Kano, “Design and Fabrication of 10-/40-Gb/s, Uncooled Electroabsorption Modulator Integrated DFB Laser With Butt-Joint Structure,” Journal Of Lightwave Technology, vol. 28, no. 1, pp. 164-171, Jan 1, 2010.
    [19] H. Zhu, S. Liang, L. Zhao, D. Kong, N. Zhu, and W. Wang, “A selective area growth double stack active layer electroabsorption modulator integrated with a distributed feedback laser,” Chinese Science Bulletin, vol. 54, no. 20, pp. 3627-3632, Oct, 2009.
    [20] 陳星宇,利用量子井混合技術整合分佈反饋式雷射與電致吸收調變器於單石基板之研究與製作,博士論文,國立台灣科技大學,民國96年。
    [21] Y. Wang, J. Q. Pan, L. J. Zhao, H. L. Zhu, and W. Wang, “Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing,” Chinese Physics B, vol. 19, no. 12, Dec, 2010.
    [22] B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technology Letters, vol. 18, no. 7, pp. 862-864, 2006.
    [23] T. Knodl, C. Hanke, B. K. Saravanan, M. Peschke, R. Schreiner, B. Stegmuller, “Integrated 1.3-µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure,” Integrated Optics and Photonic Integrated Circuits, vol. 5451, no. 10, pp. 1-7, 2004.
    [24] L. Hou, M. Tan, M. Haji, I. Eddie, and J. H. Marsh, “EML Based on Side-Wall Grating and Identical Epitaxial Layer Scheme,” IEEE Photonics Technology Letters, vol. 25, no. 12, pp. 1169-1172, 2013.
    [25] C. Sun, B. Xiong, J. Wang, P. Cai, J. Xu, J. Huang, H. Yuan, Q. Zhou, and Y. Luo, “Fabrication and Packaging of 40-Gb/s AlGaInAs Multiple-Quantum-Well Electroabsorption Modulated Lasers Based on Identical Epitaxial Layer Scheme,” Journal of Lightwave Technology, vol. 26, no. 11, pp. 1464-1471, 2008.

    QR CODE