簡易檢索 / 詳目顯示

研究生: 方姿涵
Zih-Han Fang
論文名稱: 具相同材料量子井之外部調變雷射的製作與特性分析
Fabrication and Performance Analyses of External Modulation Lasers on Identical Quantum Wells
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
葉秉慧
Ping-Hui Yeh
任大為
Da-Wei Ren
何文章
Wen-Jeng Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 分佈反饋式雷射外部調變雷射電致吸收調變器相同量子井
外文關鍵詞: DFB laser, External Modulation Laser, Identical Quantum Wells, EAM
相關次數: 點閱:321下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為實現能乘載高位元率的雷射光源,本論文以相同的含鋁四元材料作為分佈反饋式雷射與電致吸收調變器的主動層材料,積體化製作具有相同量子井之電致吸收調變雷射光源。積體化有體積較小且傳輸損耗較少等優點。
    本論文承續先前的研究,製作與量測電致吸收調變雷射,並做元件特性分析,以供後續優化此型光源。以相同量子井材料實現電致吸收調變雷射的主要挑戰在於雷射波長的選擇,必須使雷射維持較佳性能,且電致吸收調變器能有高消光比及較低損耗。由於採用新的含鋁量子井結構,希望透過各種量測了解此材料作為雷射與調變器的特性。
    完成製作具相同材料量子井之電致調變雷射後,針對不同腔長之雷射做元件的特性分析,探討其溫度對於雷射中心波長與光功率之變化,並利用雷射光源量測吸收頻譜,證實改變主動層材料與光柵設計後能有效吸收並提高消光比,量測分析量子井結構之特性,並討論雷射與電致吸收調變器增益位置對於吸收效應的影響。


    To realize the high-speed light sources to carry large data rates, this thesis investigates the feasibility of realizing electroabsorption-modulated lasers (EMLs) where the same AlInGaAs quantum wells are used as the active layers for both the laser and modulator sections. The integration of laser with modulator can have the merits of smaller device size and less optical coupling loss.
    Most of this work succeeds the device structure and fabrication procedures developed in the prior work of our group, but the laser wavelength is placed outside the absorption band of the AlInGaAs quantum wells. The lasing wavelength is a critical parameter in realizing EMLs with identical quantum wells since it affects both the laser performance as well as the extinction ratio (ER) and insertion loss of the modulator.
    The integrated EMLs are fabricated and tested for performance analyses. We measure the laser characteristics for different cavity lengths. The results indicate that wavelength and output power are strongly affected by the temperature change.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 研究動機與元件技術介紹 1 1-1 前言 1 1-2 DFB雷射簡介 2 1-3 電致吸收調變器與電致調變雷射簡介 4 1-4 研究方向 5 1-5 論文架構 5 第二章 基本理論與元件製程技術 6 2-1 DFB雷射原理 6 2-2電致吸收調變雷射 9 2-2-1 電致吸收調變器之調變原理 9 2-2-2 法蘭茲-凱爾帝希效應 11 2-2-3 量子侷限史塔克效應 13 2-3積體化整合技術 15 2-3-1 常見之積體化整合技術 15 2-3-2 積體化整合技術選擇 19 第三章 元件製程與步驟 21 3-1光罩 22 3-2製程流程與結果討論 23 第四章 元件量測與討論 40 4-1 DFB雷射量測結果與討論 40 4-1-1量測架構 40 4-1-2 AlInGaAs雷射之特性量測 42 4-2電致吸收量測結果與討論 49 4-2-1 利用雷射之ASE光源量測電致吸收結果與討論 49 4-2-2利用已激發狀態之雷射量測電致吸收結果與討論 54 4-3量子井結構特性分析 59 4-3-1 電致調變器特性量測與分析 59 4-3-2 電致調變雷射特性分析 60 第五章 結論 70 5-1成果與討論 70 5-2未來研究方向 71 參考文獻 72

    [1]J. N. Downing, Fiber-Optic Communications, Thomson, 2005.
    [2]J. W. Raring, & L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.13, No.1, pp. 3-13, Jan.-Feb., 2007.
    [3]F. Devaux, Y. Sorel, & J. F. Kerdiles, “Simple Measurement of Fiber Dispersion and of Chirp Parameter of Intensity Modulated Light Emitter,” Journal of Lightwave Technology, Vol. 11, No. 12, pp. 1937-1940, December, 1993.
    [4]B. Corbett & D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electronics Letters 7th, Vol. 31 No. 25, December, 1995.
    [5]L. A. Coldren & S. W. Corzine, “Diode lasers and photonic integrated circuits,” John Wiley and Sons, NY, 1995.
    [6]盧廷昌,王興宗,「半導體雷射技術」,五南圖書出版公司,民國99年
    [7]G. P. Li & T. Makino, “Single-Mode Yield Analysis of Partly Gain-Coupled Multiquantum-Well DFB Lasers,” IEEE photonics technology letters, Vol. 5, No. 11, pp. 1282-1284, November, 1993.
    [8]J. B. M. Boavida, J.A.P. Morgado, C.A.F. Fernandes, “HR-AR coated DFB lasers with high-yield and enhanced above-threshold performance,” Optics & Laser Technology, Vol. 43, No. 3 , pp.729–735, October, 2010.
    [9]K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4-Shifted InGaAsP/InP DFB Lasers,” IEEE journal of quantum electronics, Vol. QE-22, No. 7. pp. 1042-1051, July, 1986.
    [10]S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, Ch4., 2001.
    [11]J. Shim, B. Liu, J. E. Bowers, “Dependence of Transmission Curves on Input Optical Power in an Electroabsorption Modulator,” IEEE journal of quantum electronics, Vol. 40, No. 11, pp. 1622-1628, November, 2004.
    [12]S. Højfeldt, J. Mørk, “Modeling of Carrier Dynamics in Quantum-Well Electroabsorption Modulators,” IEEE Journal of selected topics in quantum electronics, Vol. 8, No. 6, pp. 1265-1267, Nov.-Dec., 2002.
    [13]D. A. B Miller, D. S. Chemla, S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantiun wells: The quantum-confined Franz-Keldysh effect,” Physical Review B, Vol. 33, No. 10, pp. 6976-6982, 15 May 1986.
    [14]G. L. Li, P. K. L Yu, “Optical Intensity Modulators for Digital and Analog Applications,” Journal of Lightwave Technology, Vol.21, No.9, pp. 2010-2030, Sept. 2003.
    [15]陳星宇,利用量子井混合技術整合分析分佈反饋式雷射與電致吸收調變器於單石基板之研究與製作,碩士論文,國立台灣科技大學,民國97年7月。
    [16]X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. P. Lester, & M. J. Malloy, , ” Bistable Operation of a Two-Section 1.3-μm InAs Quantum Dot Laser—Absorption Saturation and the Quantum Confined Stark Effect,” IEEE Journal of Quantum Electronics Vol.37, No. 3, pp. 414-417, March, 2001.
    [17]P. Bhattacharya, Semiconductor Optoelectronic Devices, PHI Learning, 2009.
    [18]J. J. M. Binsma, M. Van Geemert, F. Heinrichsdorff, T. Van Dongen, , R. G. Broeke & M. K. Smit, “MOVPE Waveguide Regrowth in InGaAsP/InP with Extremely Low Butt-Joint Loss,” In Proc. IEEE/LEOS Symposium (Benelux Chapter), pp. 245-248, December, 2001.
    [19]Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, & W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” Journal of Crystal Growth, Vol. 308(2), pp.297–301, 2007.
    [20]C. Zhang, S. Liang, H. Zhu, L. Han, D. Lu, C. Ji & W. Wang, “The fabrication of 10-channel DFB laser array by SAG technology,” Optics Communications, Vol. 311, pp. 6–10, 2013.
    [21]H. Zhu, S. Liang, L. Zhao, D. Kong, N. Zhu, & W. Wang, “A selective area growth double stack active layer electroabsorption modulator integrated with a distributed feedback laser,” Chinese Science Bulletin, Vol. 54, No. 20, pp. 3627-3632,October, 2009.
    [22]S. Ikeda, & A. Shimizu, “Evidence of the wavelength switching caused by a blocked carrier transport in an asymmetric dual quantum well laser,” Applied physics letters, Vol. 59, No. 5, pp. 504-506, 1991.
    [23]S. R. Jain, M. N. Sysak, G. Kurczveil & J. E. Bowers, “Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing,” Optics express, Vol. 19, No. 14, pp. 13692-13699, July, 2011.
    [24]蕭家林,”1.55μm附近InGaAlAs/InP多重量子井雷射二極體的設計與研製”,碩士論文,國立台北科技大學,民國95年7月。
    [25]B. W. Hakki & T. L. Paoli, "Gain spectra in GaAs double−heterostructure injection lasers," Journal of Applied Physics, Vol. 46, 1299, 1975.
    [26]蘇倍瑩,“以啁啾式多層堆疊量子點實現波長可調外腔式雷射”,碩士論文,國立交通大學,民國100年11月。
    [27]黃正鈞,”設計及製作不同光柵的分佈反饋式半導體雷射及其與電致吸收調變器之積體化”,碩士論文,國立台灣科技大學,民國105年7月。
    [28]J. Liu, ” Monolithically Integrated Ge-on-Si Active Photonics,” Photonics, Vol. 1, No. 3, pp. 162-197, July 2014.

    QR CODE