簡易檢索 / 詳目顯示

研究生: 郭柏毅
Po-I Kuo
論文名稱: 不同添加物的高分子基複合材料之磨潤行為研究
A Study on Tribology Behavior of The Polymer-Based Composite with Different Additives
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 黃佑民
You-Min Huang
鍾俊輝
chun-hui chung
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 148
中文關鍵詞: 二硫化鉬碳纖維磨潤性能高分子基複合材料
外文關鍵詞: Cu, MoS2, Carbon Fiber, Tribological Properties, Polymer-Based Composites
相關次數: 點閱:251下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用酚醛樹脂與聚甲醛做為基材,以銅、二硫化鉬、碳纖維做為添加材料進行配置,且利用矽烷偶合劑對添加材料的表面進行改質,並以熱壓製程成形出12種不同添加物之高分子基複合材料,針對試片橫截面、硬度、抗壓強度以及熱穩定性進行檢測,使用環對盤的測試方法,以0.21MPa負載在不同滑動速度(0.53m/s、1.6m/s)條件下進行磨耗試驗並擷取摩擦係數與量測各類試片的磨耗損失,且透過SEM/EDS觀察磨耗表面形貌進行磨潤行為分析。
    結果顯示,POM在低滑動速度下,其耐磨耗性最佳,但高速滑動下,因摩擦熱影響而使其軟化與熔融導致失去耐磨耗能力。綜合不同滑動速度條件,酚醛樹脂/銅-二硫化鉬試片的耐磨耗性最佳,其因添加二硫化鉬能改善其摩擦行為,使其摩擦係數穩定且轉移膜平滑,有效降低滑動面的相互干涉行為,而銅與二硫化鉬的共混,有效降低二硫化鉬的團聚行為,對於僅添加二硫化鉬的試片,其抗壓強度具有提升。此外,其平均摩擦係數能維持在0.33~0.36的範圍且無明顯的衰減現象,使其應用至煞車來令片的適用性評估具最佳的開發潛力。


    This study focuses on the use of phenol formaldehyde (PF) and polyoxymethylene(POM) resin as the base materials associated with the additives of Cu, MoS2 and carbon fibers. Besides, the silane coupling agent was used for surface modification. Following, the twelve kinds of specimens of friction polymer matrix composites were manufactured by the hot pressing process. The cross sections, mechanical properties and thermal stability were investigated. Tribological performance of the specimens was evaluated by the ring-on-disc apparatus. The load of 0.21MPa and the sliding velocities of 0.53 m/s and 1.6 m/s were applied as the testing parameters. Friction coefficient, wear loss and worn surface morphology were observed.
    The results show that POM at low sliding speeds exhibited superior wear resistance. However, frictional heat to soften or melt the material resulted in the inferior wear resistance under the high sliding speed. Generally, the phenolic resin/ Cu-MoS2 specimen exhibited the best wear resistance because the addition of MoS2 improved the frictional behavior and reduced the interference between the sliding surfaces, leading to stable friction coefficient and smooth transfer films. Besides, the mix of Cu and MoS2 effectively reduced the agglomeration of MoS2, which increased the compressive strength for the MoS2 specimens, In addition, the variation on average of friction coefficient between 0.33 and 0.36 shows a potential development of pad material in brake systems.

    摘要 I ABSTRACT II 誌謝 III 圖索引 VII 表索引 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 複合材料的定義與酚醛樹脂及聚甲醛高分子的性質比較 3 2.2摩擦材料的基本特性及使用環境 5 2.2.1摩擦材料在乾式摩擦環境下的性質 5 2.2.2典型乾式摩擦材料(煞車來令片)的基本特性 6 2.3高分子基摩擦材料的性質與改良 7 2.3.1高分子材料的摩擦性質 7 2.3.2酚醛樹脂與聚甲醛材料應用於摩擦組件的缺點 8 2.3.3改良高分子材料應用於摩擦環境的常用添加物 8 2.4磨潤學理論 12 2.4.1摩擦行為之探討 12 2.4.2磨耗機構之分類 14 2.4.3高分子材料的轉移膜特性 16 第三章 實驗方法與步驟 18 3.1實驗材料 18 3.1.1基材 18 3.1.2銅粉末 21 3.1.3纖維 21 3.1.4二硫化鉬 22 3.1.5矽烷偶合劑 22 3.2高分子基摩擦材料的製程 23 3.2.1粉末製備 23 3.2.2銅/二硫化鉬/碳纖維的表面改質 24 3.2.3熱壓設備 26 3.2.4模具設計 27 3.2.5熱壓參數 28 3.3磨耗試片之規格與製備 30 3.3.1固定下試片 30 3.3.2迴轉上試片 31 3.4材料性質檢測 33 3.4.1機械性質之硬度檢測 33 3.4.2機械性質抗壓強度檢測 35 3.4.3添加材料分散性之橫截面檢測 35 3.4.4熱穩定性之熱分析檢測 36 3.5磨耗試驗之相關儀器 36 3.5.1磨耗試驗儀器 36 3.5.2各種分析儀器 37 3.6磨耗試驗 39 3.6.1磨耗試驗參數 39 3.6.2摩擦力、摩擦係數、磨耗損失的量測與計算 40 3.6.3磨耗試驗之步驟 41 第四章 結果與討論 42 4.1 銅/二硫化鉬/碳纖維/酚醛樹脂/聚甲醛原料之幾何特徵的檢測 ………………………………………………………………..…42 4.2不同成份的複合材料之橫截面檢測 47 4.2.1酚醛樹脂-添加粉末試片之橫截面形貌與元素分佈 47 4.2.2聚甲醛-添加粉末試片之橫截面形貌與元素分佈 51 4.2.3酚醛樹脂/聚甲醛添加碳纖維試片之橫截面形貌 55 4.3各類試片的TGA熱重分析 56 4.4不同高分子基複合材料的機械性質 65 4.4.1添加物對不同高分子基複合材料硬度的影響 65 4.4.2不同高分子基複合材料的抗壓強度的影響 67 4.5試片磨耗後的表面粗糙度檢測 74 4.6各類試片的磨潤特性評估 77 4.6.1不同基材的磨潤行為 77 4.6.2 添加Cu粉體之複合材料的磨潤行為 86 4.6.3 添加 MoS2之複合材料的磨潤行為 95 4.6.4 添加 Cu/MoS2之複合材料的磨潤行為 105 4.6.5 添加CF之複合材料的磨潤行為 115 4.6.6 添加CF/MoS2之複合材料的磨潤行為 123 4.6.7 磨耗損失綜合評估 131 4.7各類試片運用於煞車來令片的適用性評估 134 第五章 結論與建議 142 5.1 結論 142 5.2 未來方向與建議 143 參考文獻 144

    1. B. S. Unlua, E. Atik and S. Koksal, “Tribological Properties of Polymer-Based Journal Bearings”, Materials and Design, Vol.30, pp.2618-2622 (2009).
    2. K. H. Hu, J. Wang, S. Schraube, Y. F. Xu and R. Stengler, “Tribological Properties of MoS2 Nano-Balls as Filler in Polyoxymethylene-Based Composite Layer of Three-Layer Self-Lubrication Bearing Materials”, Wear, Vol.266, pp1198-1207 (2009).
    3. J. He, L. Zhang and C. Li, “Thermal Conductivity and Tribological Properties of POM-Cu Composites”, Polymer Engineering and Science, Vol.50, pp.2153-2159 (2010).
    4. 徐國財、張立德, 奈米複合材料, 五南圖書出版公司, (2002)。
    5. 許明發、郭文雄, 複合材料, 高立圖書有限公司, (1998)。
    6. 游錫揚, 纖維複合材料, 國彰出版社, (1992)。
    7. A. Ibnyaich, “Modificarion of the Properties Biobased Thermoset Resin Using Cellulose Nano-Whidkers (CNW) as an Additive”, Lulea University of Technology (2010).
    8. Wikipedia Website (http://en.wikipedia.org/wiki/Polyoxymethylene).
    9. A. Pizzi and C. C. Ibeh, “Phenol Formaldehydes”, Handbook of Thermoset Plastics, Vol.2, pp.13-41 (2014).
    10. B. Pugh,摩擦與磨耗 (楊春欽譯), 科技圖書有限公司, (1984)。
    11. 何淑靜, 銅/酚醛樹脂基半金屬摩擦材料磨潤性質研究, 國立成功大學博士學位論文, (2004)。
    12. D. F. Moore, 磨潤學原理與應用(楊春欽譯), 科技圖書有限公司, (1983)。
    13. 陳榮志, 乾摩擦溫度對壓克力/氧化鋁奈米複材之摩擦與磨耗之影響
    , 國立雲林科技大學碩士學位論文, (2009)。
    14. P. Gopal, L. R Dharani and Frank. D. Blum, “Fade and Wear Characteristics of a Glass Fiber Reinforced Phenolic Friction Material”, Wear, Vo1.74, pp.119-127 (1994).
    15. X. Hu, “Tribological Behaviour of Modified Polyacetal Against MC Nylon without Lubrication”, Tribology Letters, Vol.5, pp.313–317 (1998).
    16. P. Gopal, L. R. Dharani and F. D. Blum, “Load, Speed and Temperature Sensitivities of a Carbon-Fiber-Reinforced Phenolic Friction Material”, Wear, Vol.181, pp.913-921 (1995).
    17. B. Vishwanath, A.P. Verma and C. V. S. Kameswara Rao, “Effect of Reinforcement on Friction and Wear of Fabric Reinforced Polymeric Composites”, Wear, Vol.167, pp.93-99 (1993).
    18. R. Lin, L. Fang, X. Li, Y. Xi, S. Zhang and P. Sun, “Study on Phenolic Resins Modified by Copper Nanoparticles”, Polymer Journal, Vol.38, pp.178-183 (2006).
    19. 彭德興, 不同固體潤滑劑添加至銅基軸承材料的磨潤特性研究, 國立台灣科技大學碩士學位論文, (1999)。
    20. J. F. Yang, B. Papakash, J. Hardell and Q. F. Fang, “Tribological Properties of Transition Metal Di-Chalcogenide Based Lubricant Coatings”, Frontiers of Materials Science, Vol.6, pp.116-127 (2012).
    21. T. Kubart, T. Polcar, L. Kopecky, R. Novak and D. Novakova, “Temperature Dependence of Tribological Properties of MoS2 and MoSe2 Coatings”, Surface and Coatings Technology, Vol.193, pp.230-233 (2005).
    22. Y. Wu, F. Wang, Y. Cheng and N. Chen, “A Study of The Optimization Mechanism of Solid Lubricant Concentration in Ni/MoS2 Self-Lubricating Composite”, Wear, Vol.205, pp.64-70 (1997).
    23. C. Long and M. Hua, “Study on POM Composites Modified by Ekonol and Lubricant”, Journal of Thermoplastic Composite Materials, Vol.18, pp.381-391 (2005).
    24. I. Lahouij, F. Dassenoy, B. Vacher and J. M. Martin, “Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle” , Tribology Letters, Vol.45, pp.131-141 (2012).
    25. 陳琰, 塑膠添加劑, 高立圖書有限公司, (1970)。
    26. 劉慶良, 丙烯酸系感壓膠用於光學薄膜配方及其耐候表現之研究,
    國立臺北科技大學碩士學位論文, (2009)。
    27. N. P. Suh and H. C. Sin, “The Genesis of Friction”, Wear, Vol.69, pp.91-114 (1981).
    28. DIN50320: Verschleiβ–Begriffe, Anakyse Von Verschleiβ vorgangen, Gliederung des Verschleiβ gebietes, Beuth Verlag, Berlin (1979).
    29. E. Rabinowicz, “An Adhesive Wear Model Based on Variations in Strength Values”, Wear, Vol.63, pp.175-181 (1980).
    30. K. H. Z. Gahr, “Microstructure and Wear of Materials”, Tribology Series 10, Elsevier Press (1987).
    31. B. J. Briscoe1 and S. K. Sinha, “Wear of Polymers”, Journal of Engineering Tribology, Vol.216, pp.401-413 (2002).
    32. S. Bahadur and C. Sunkara, “Effect of Transfer Film Structure,Composition and Bonding on the Tribological Behavior of Polyphenylene Sulfide with Nano Particles TiO2,ZnO,CuO and SiC”, Wear, Vol.258, pp.1411-1421 (2005).
    33. 彭凱奇, 二氧化鈦奈米粉末於高分子鑽石複合研磨盤之研磨性能研究, 國立台灣科技大學碩士論文, (2013)。
    34. 國內長春公司所販售的酚醛樹脂粉末之規格資料(http://www.ccp.com.tw/product.nsf/0/fff5b8bce1a5f088482568b200330a4a/$FILE/PMC%20Introduction.pdf).
    35. 國內祺源公司所販售的聚甲醛顆粒之規格資料
    (http://www.cheer-young.com.tw/see_product.php?pd_nbr=51).
    36. 國內永虹科技公司所販售的碳纖維之規格資料
    (http://www.uht.com.tw/cp/main/index.php).
    37. S. Kalpakjian, S. R. Schmid and H. Musa, “Manufacturing Engineering and Technology”, Prentice Hall (2009).
    38. 黃喜雄, 鑄品檢測之硬度試驗, 行政院勞委會, (1989)。
    39. Designation: D695-96, “Standard Test Method for Compressive Properties of Rigid Plastics ”, An American National Standard (2014).
    40. 劉銘璋、林岱瑋、王漢松、張秋玲, 熱分析, 台灣大學化學系。
    41. 陳漢宏, 不同表面處理的渦卷式壓縮機滑動件在各種冷媒及潤滑劑環境中的磨潤行為研究, 國立台灣科技大學碩士論文, (2011)。

    QR CODE