簡易檢索 / 詳目顯示

研究生: 張凱程
Kai-Cheng Chang
論文名稱: 製備銅氧化物複合纖維並探討以熱能或微波電漿進行後處理之效應
The Effects of Heat or Microwave Plasma Post-treatments on the Prepared Copper Oxides Composite Fibers and the Potential Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 胡啟章
Chi-Chang Hu
黃昆平
Kun-Ping Huang
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 134
中文關鍵詞: 氬氣微波電漿靜電紡絲銅氧化物抗菌光觸媒比電容
外文關鍵詞: Argon microwave plasma, Electrospinning, Copper oxides composite fibers (CuxOy fibers), Antibacterial, Photocatalyst, Specific capacitance
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的為製備銅氧化物複合纖維 (CuxOy fibers),並探討藉由兩種不同能量的後處理方式: 高溫爐鍛燒及氬氣微波電漿,控制不同溫度、與微波電漿處理時間,以製備不同表面型態、晶體結構的CuxOy fibers。在分析方面,以FE-SEM、XRD、XPS、Raman spectroscopy、及TGA,探討所製備CuxOy fibers的表面型態、晶體結構、表面化學元素組成與結構鑑定,熱穩定及分解性質等材料性質。
    本論文製備CuxOy fibers,共有三部分的研究應用:首先,應用CuxOy fibers於抗菌實驗,將製備的CuxOy fibers分別對於大腸桿菌及金黃色葡萄球菌進行抗菌分析,以Agar盤之抑菌圈,對CuxOy fibers抗菌活性進行討論。實驗結果顯示,在細菌培養6小時的情形下,利用微波電漿後處理300秒的CuxOy fibers對於金黃色葡萄球菌具有較佳的抗菌性,其抑菌圈為20.5毫米。此外,將金黃色葡萄球菌的培養時間延長至10小時,抑菌圈則增大為22.4毫米,意謂利用微波電漿製備的CuxOy fibers具有長時間的抗菌效果。另一方面,利用400、500、600°C高溫鍛燒後處理的CuxOy fibers,在細菌培養6小時的情形下,無抑菌圈產生。然而,培養10小時的情形下,利用高溫爐鍛燒後處理600°C的CuxOy fibers,對於金黃色葡萄球菌具有較佳的抗菌性,其抑菌圈為17.8毫米,將此結果與利用微波電漿製備的CuxOy fibers對細菌的抑菌圈相比較,可發現經過微波電漿後處理的CuxOy fibers具有較高的抗菌能力。
    本論文製備CuxOy fibers的第二項應用為光催化觸媒,藉由光催化後之CuxOy fibers可降解甲基橙與4-硝基苯酚,因此可評估CuxOy fibers的光觸媒活性。結果顯示,相較於利用熱處理製備CuxOy fibers發現,透過微波電漿後處理210秒的CuxOy fibers,對於甲基橙與4-硝基苯酚有較快速之降解能力。另外,與文獻的光觸媒催化降解甲基橙的效率相比較,可發現本研究製備的CuxOy fibers除了具有較高的降解效率,在製備步驟上也較為簡單與省時。此外,針對添加不同濃度雙氧水對於4-硝基苯酚之降解效率結果中,可發現在微波電漿後處理210秒的CuxOy fibers之光觸媒催化下,添加雙氧水濃度為30 mM時,有最佳之降解效率80.3 %。
    本論文製備CuxOy fibers的第三項應用為超級電容的活性材料,以發泡鎳為基材,並添加CuxOy fibers,透過電化學的循環伏安法計算超級電容的比電容量。結果顯示,在添加不同溫度鍛燒後處理的CuxOy fibers,其中以鍛燒600°C的超級電容之比電容量較高,為404.0F/g。另一方面,在添加不同處理時間之微波電漿後處理的CuxOy fibers,當處理時間為210秒時,超級電容有最高的比電容量,為581.2 F/g。此外,相較於文獻之比電容量,可發現微波電漿後處理210秒的CuxOy fibers之超級電容,除了具有較高的比電容量,在測試時使用的電解質濃度也相對較低,為2 M KOH。因此,本研究製備的CuxOy fibers有極大之潛力作為超級電容的活性材料。


    In this thesis, copper oxides composite nanofibers (CuxOy fibers) were fabricated by post-treatment of thermal energy and microwave plasma. In the preparation of CuxOy fibers, 2 types of method, calcination and microwave-induced argon plasma, were used as post-treatment to convert the precursor of Cu(NO3)2 into copper, cupric oxide (CuO) and cuprous oxide (Cu2O) on nanofibers. Furthermore, different temperature of calcination and treatment time of argon microwave plasma to prepare the different surface morphology and crystallinity of CuxOy fibers. The physical characteristics of CuxOy fibers were studied by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Electron Spectroscopy for Chemical Analysis (ESCA), Raman spectrometry, Thermogravimetry Analysis (TGA).
    For the applications, in the first part, antibacterial tests against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) were performed by measuring inhibition zone of different post-treated CuxOy fibers on Agar plate. The results showed that the prepared CuxOy fibers with argon microwave plasma treated 300 s showed better anti-S.aureus activity with the inhibition zone of 20.5 mm. On the other hand, the inhibition zone of prepared CuxOy fibers with argon microwave plasma treated 300 s against S.aureus increased from 20.5 mm to 22.4 mm with increasing of incubation time from 6 to 10 hours. The fabricated CuxOy fibers treated with argon microwave plasma can prolong the antibacterial effects.
    In the second part, in order to evaluate the photocatalytic activity of CuxOy fibers which were applied as the photocatalyst for degrading methyl orange and 4-nitrophenol. The results showed that CuxOy fibers treated with argon microwave plasma for 210 s showed the higher photocatalytic degradation capability against methyl orange and 4-nitrophenol. Compared with literature, it can be found that the CuxOy fibers which was prepared in this study exhibited not only high efficiency to degrade methyl orange but also simple preparation step. Moreover, the effects of concentration of hydrogen peroxide on degrading 4-nitrophenol were investigated. The results indicate that 30 mM of hydrogen peroxide showed the better degradation ability with 80.3% efficiency.
    In the last part of this thesis, CuxOy fibers were applied to prepare the electrode. The electrochemical analysis, cyclic voltammetry (CV), was applied to investigate the reduction-oxidation (redox) peak and current responses of CuxOy fibers modified nickel foam electrode. The specific capacitance of CuxOy fibers was calculated by area of CV results. The CuxOy fibers was prepared by argon microwave plasma treated with 210 and 480 s, which showed higher specific capacitance of 412.9 and 418.6 F/g, respectively. Beside the high specific capacitance of CuxOy fibers, the concentration of electrolyte was lower than that was reported in literature in electrochemical analysis that is 2 M KOH. Therefore, the fabricated CuxOy fibers with argon microwave plasma treatment exhibited huge potential as material for supercapacitor.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究目標 2 第二章 文獻回顧 4 2-1 奈米材料 4 2-1-1 奈米材料簡介 4 2-1-2 奈米金屬觸媒特性 6 2-2 銅氧化物的奈米材料之發展與應用 9 2-2-1 銅氧化物的奈米材料之製備 9 2-2-2 銅氧化物應用於抗菌材料上之發展及其抗菌機制 19 2-2-3 銅氧化物應用於光觸媒上並降解染料與酚之衍生物 24 第三章 實驗方法與儀器原理 34 3-1 實驗設備 34 3-2 實驗藥品 36 3-3 實驗方法 37 3-3-1 靜電紡絲設備 37 3-3-2 製備電紡纖維 37 3-3-3 微波電漿火炬化學氣相沉積機台 38 3-3-4 製備電紡纖維包含氧化銅,氧化亞銅與銅的奈米顆粒 40 3-3-5 抗菌活性測試 41 3-3-6 光催化活性評估測試 43 3-3-7 循環伏安法之樣品製備 44 3-4分析儀器原理與方法 45 3-4-1 場發射電子顯微鏡分析 45 3-4-2 X光繞射分析 45 3-4-3紫外線/可見光分光光譜儀 46 3-4-4 熱重分析儀 46 3-4-5 拉曼光譜儀 46 3-4-6 化學分析影像能譜儀 47 3-4-7 CuxOy fibers之光催化活性評估 48 3-4-8 CuxOy fibers之比電容量 48 第四章 抗菌與光觸媒活性能力 50 4-1 CuxOy fibers之製備並探討熱能或微波電漿後處理之影響 51 4-1-1 分析所製備CuxOy fibers之表面型態 51 4-1-2 CuxOy fibers之晶體結構分析 55 4-1-3 CuxOy fibers之熱分解性質 59 4-1-4 CuxOy fibers之表面化學元素組成鑑定 63 4-1-5 CuxOy fibers之表面化學結構分析 67 4-2 探討熱能或微波電漿進行後處理製備CuxOy fibers之抗菌性比較 70 4-2-1 CuxOy fibers對於大腸桿菌 (E.coli) 之抗菌性分析 70 4-2-2 CuxOy fibers對於金黃色葡萄球菌 (S.aureus) 之抗菌性 74 4-3探討熱能或微波電漿進行後處理製備CuxOy fibers之光催化活性評估 77 4-3-1 CuxOy fibers應用於光催化降解甲基橙之效能 78 4-3-2 CuxOy fibers應用於光催化降解4-硝基苯酚之效能 85 第五章 比電容量評估 94 5-1 以不同能量之後處理製備CuxOy fibers於循環伏安法之電流響應分析 94 5-2 以不同掃描速率對微波電漿之後處理製備CuxOy fibers於循環伏安法之電流響應分析 96 5-3 利用CV面積計算CuxOy fibers之比電容量其結果與文獻值相比較 99 第六章 結論與未來展望 101 6-1 探討不同鍛燒溫度與微波電漿處理時間對CuxOy fibers材料性質之影響 101 6-2 利用Agar plate之抑菌圈大小探討高溫爐鍛燒與微波電漿處理對CuxOy fibers之抗菌性影響 103 6-3 探討不同鍛燒溫度與微波電漿處理時間對CuxOy fibers光催化活性之評估 103 6-4 探討不同鍛燒溫度與微波電漿處理時間對CuxOy fibers之比電容影響 104 第七章 參考文獻 105 第八章 附錄 (Q&A) 113

    1. Thavasi, V., G. Singh, and S. Ramakrishna, Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science, 2008. 1(2): p. 205-221.
    2. Soon, A.N. and B. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 2011. 269(1): p. 1-16.
    3. Claxton, L.D., V.S. Houk, and T.J. Hughes, Genotoxicity of industrial wastes and effluents. Mutation Research/Reviews in Mutation Research, 1998. 410(3): p. 237-243.
    4. Vanhulle, S., M. Trovaslet, E. Enaud, M. Lucas, S. Taghavi, D. Van Der Lelie, B. Van Aken, M. Foret, R.C. Onderwater, and D. Wesenberg, Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environmental science & technology, 2007. 42(2): p. 584-589.
    5. Liu, L., Z.Y. Gao, X.P. Su, X. Chen, L. Jiang, and J.M. Yao, Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustainable Chemistry & Engineering, 2015. 3(3): p. 432-442.
    6. Haider, A., S. Kwak, K.C. Gupta, and I.-K. Kang, Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. Journal of Nanomaterials, 2015. 16(1): p. 107.
    7. Korkut, S., B. Keskinler, and E. Erhan, An amperometric biosensor based on multiwalled carbon nanotube-poly (pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta, 2008. 76(5): p. 1147-1152.
    8. Liu, Z., J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, and Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochemistry Communications, 2009. 11(7): p. 1365-1368.
    9. Qu, X., J. Brame, Q. Li, and P.J. Alvarez, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Accounts of chemical research, 2012. 46(3): p. 834-843.
    10. Lüddeke, F., S. Heß, C. Gallert, J. Winter, H. Guede, and H. Loeffler, Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water research, 2015. 69: p. 243-251.
    11. 張立德, 奈米材料. 2002: 五南圖書出版股份有限公司.
    12. 王世敏, 許祖勛, 和傅晶, 奈米材料原理與製備. 2004: 五南圖書出版股份有限公司.
    13. 馬遠榮, 低維奈米材料. 2004, 科學發展月刊.
    14. 高濂和张青红, 奈米光觸媒. 2004: 五南圖書出版股份有限公司.
    15. Subbulekshmi, N. and E. Subramanian, Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline. Journal of Environmental Chemical Engineering, 2017. 5(2): p. 1360-1371.
    16. Lee, S.S., H. Bai, Z. Liu, and D.D. Sun, Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water research, 2013. 47(12): p. 4059-4073.
    17. Shrestha, K.M., C.M. Sorensen, and K.J. Klabunde, Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. The Journal of Physical Chemistry C, 2010. 114(34): p. 14368-14376.
    18. Kumar, R.V., Y. Diamant, and A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chemistry of Materials, 2000. 12(8): p. 2301-2305.
    19. Mazhar, M., G. Faglia, E. Comini, D. Zappa, C. Baratto, and G. Sberveglieri, Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sensors and Actuators B: Chemical, 2016. 222: p. 1257-1263.
    20. Reitz, J.B. and E.I. Solomon, Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. Journal of the American Chemical Society, 1998. 120(44): p. 11467-11478.
    21. Zhu, Y., T. Yu, F. Cheong, X. Xu, C. Lim, V. Tan, J. Thong, and C. Sow, Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnology, 2004. 16(1): p. 88.
    22. Siddiqui, H., M. Qureshi, and F.Z. Haque, Valuation of copper oxide (CuO) nanoflakes for its suitability as an absorbing material in solar cells fabrication. Optik-International Journal for Light and Electron Optics, 2016. 127(8): p. 3713-3717.
    23. Yang, W., J. Wang, W. Ma, C. Dong, G. Cheng, and Z. Zhang, Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes. Journal of Power Sources, 2016. 333: p. 88-98.
    24. Jang, J., S. Chung, H. Kang, and V. Subramanian, P-type CuO and Cu2O transistors derived from a sol–gel copper (II) acetate monohydrate precursor. Thin Solid Films, 2016. 600: p. 157-161.
    25. Jiang, T., Y. Wang, D. Meng, X. Wu, J. Wang, and J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Applied Surface Science, 2014. 311: p. 602-608.
    26. Zhang, W., H. Wang, Y. Zhang, Z. Yang, Q. Wang, J. Xia, and X. Yang, Facile microemulsion synthesis of porous CuO nanosphere film and its application in lithium ion batteries. Electrochimica Acta, 2013. 113: p. 63-68.
    27. Dong, C., X. Xing, N. Chen, X. Liu, and Y. Wang, Biomorphic synthesis of hollow CuO fibers for low-ppm-level n-propanol detection via a facile solution combustion method. Sensors and Actuators B: Chemical, 2016. 230: p. 1-8.
    28. Yang, C., F. Xiao, J. Wang, and X. Su, 3D flower-and 2D sheet-like CuO nanostructures: microwave-assisted synthesis and application in gas sensors. Sensors and Actuators B: Chemical, 2015. 207: p. 177-185.
    29. Altaweel, A., G. Filipič, T. Gries, and T. Belmonte, Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow. Journal of Crystal Growth, 2014. 407: p. 17-24.
    30. Chakraborty, R., R.K. Sarkar, A.K. Chatterjee, U. Manju, A.P. Chattopadhyay, and T. Basu, A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action. Biochimica et Biophysica Acta (BBA)-General Subjects, 2015. 1850(4): p. 845-856.
    31. Ungur, G. and J. Hrza, Influence of copper oxide on the formation of polyurethane nanofibers via electrospinning. Fibers and Polymers, 2015. 16(3): p. 621.
    32. Malwal, D. and P. Gopinath, Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. Journal of Hazardous Materials, 2017. 321: p. 611-621.
    33. Yu-sen, E.L., R.D. Vidic, J.E. Stout, C.A. McCartney, and L.Y. Victor, Inactivation of Mycobacterium avium by copper and silver ions. Water Research, 1998. 32(7): p. 1997-2000.
    34. Kim, J.-H., H. Cho, S.-E. Ryu, and M.-U. Choi, Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Archives of Biochemistry and Biophysics, 2000. 382(1): p. 72-80.
    35. Stohs, S.J. and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions. Free radical biology and medicine, 1995. 18(2): p. 321-336.
    36. Hassan, M.S., T. Amna, O.-B. Yang, M.H. El-Newehy, S.S. Al-Deyab, and M.-S. Khil, Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2012. 97: p. 201-206.
    37. Thampi, V.A., S.T. Rajan, K. Anupriya, and B. Subramanian, Functionalization of fabrics with PANI/CuO nanoparticles by precipitation route for anti-bacterial applications. Journal of Nanoparticle Research, 2015. 17(1): p. 57.
    38. Brown, G.E., V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Grätzel, G. Maciel, and M.I. McCarthy, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chemical Reviews, 1999. 99(1): p. 77-174.
    39. Applerot, G., J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, and E. Banin, Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small, 2012. 8(21): p. 3326-3337.
    40. Johan, M.R., M.S.M. Suan, N.L. Hawari, and H.A. Ching, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int. J. Electrochem. Sci, 2011. 6: p. 6094-6104.
    41. Scuderi, V., G. Amiard, S. Boninelli, S. Scalese, M. Miritello, P. Sberna, G. Impellizzeri, and V. Privitera, Photocatalytic activity of CuO and Cu2O nanowires. Materials Science in Semiconductor Processing, 2016. 42: p. 89-93.
    42. Sharma, A., M. Varshney, J. Park, T.-K. Ha, K.-H. Chae, and H.-J. Shin, XANES, EXAFS and photocatalytic investigations on copper oxide nanoparticles and nanocomposites. RSC Advances, 2015. 5(28): p. 21762-21771.
    43. Liu, X., J. Chen, P. Liu, H. Zhang, G. Li, T. An, and H. Zhao, Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Applied Catalysis A: General, 2016. 521: p. 34-41.
    44. Yurddaskal, M., T. Dikici, and E. Celik, Effect of annealing temperature on the surface properties and photocatalytic efficiencies of Cu2O/CuO structures obtained by thermal oxidation of Cu layer on titanium substrates. Ceramics International, 2016. 42(15): p. 17749-17753.
    45. Zhou, B., H. Wang, Z. Liu, Y. Yang, X. Huang, Z. Lü, Y. Sui, and W. Su, Enhanced photocatalytic activity of flowerlike Cu2O/Cu prepared using solvent-thermal route. Materials Chemistry and Physics, 2011. 126(3): p. 847-852.
    46. Zhou, B., Z. Liu, H. Zhang, and Y. Wu, One-pot synthesis of Cu2O/Cu self-assembled hollow nanospheres with enhanced photocatalytic performance. Journal of Nanomaterials, 2014. 2014: p. 1.
    47. Wang, S., X. Wang, H. Zhang, and W. Zhang, Hollow CuO microspheres with open nanoholes: Fabrication and photocatalytic properties. Journal of Alloys and Compounds, 2016. 685: p. 22-27.
    48. Oturan, M.A., J. Peiroten, P. Chartrin, and A.J. Acher, Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environmental Science & Technology, 2000. 34(16): p. 3474-3479.
    49. Yang, L., S. Luo, Y. Li, Y. Xiao, Q. Kang, and Q. Cai, High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 pn heterojunction network catalyst. Environmental science & technology, 2010. 44(19): p. 7641-7646.
    50. Sun, S.-P. and A.T. Lemley, p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. Journal of Molecular Catalysis A: Chemical, 2011. 349(1): p. 71-79.
    51. Yang, L., D. Chu, and L. Wang, CuO core–shell nanostructures: Precursor-mediated fabrication and visible-light induced photocatalytic degradation of organic pollutants. Powder Technology, 2016. 287: p. 346-354.
    52. Sun, L., G. Wang, R. Hao, D. Han, and S. Cao, Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of rhodamine B. Applied Surface Science, 2015. 358: p. 91-99.
    53. Ding, J., L. Liu, J. Xue, Z. Zhou, G. He, and H. Chen, Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. Journal of Alloys and Compounds, 2016. 688: p. 649-656.
    54. Chai, F., K. Li, C. Song, and X. Guo, Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition. Journal of colloid and interface science, 2016. 475: p. 119-125.
    55. Jiang, G., R. Wang, H. Jin, Y. Wang, X. Sun, S. Wang, and T. Wang, Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder technology, 2011. 212(1): p. 284-288.
    56. Zhang, Y.-F., L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, and J.-D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Applied Catalysis B: Environmental, 2014. 144: p. 863-869.
    57. Lü, X.-f., W.-j. Sun, J. Li, W.-x. Xu, and F.-x. Zhang, Spectroscopic investigations on the simulated solar light induced photodegradation of 4-nitrophenol by using three novel copper (II) porphyrin–TiO2 photocatalysts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 111: p. 161-168.
    58. Yu, M.-M., C. Wang, J. Li, L. Yuan, and W.-J. Sun, Facile fabrication of CuPp–TiO2 mesoporous composite: An excellent and robust heterostructure photocatalyst for 4-nitrophenol degradation. Applied Surface Science, 2015. 342: p. 47-54.
    59. Ayodele, O. and B. Hameed, Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process. Journal of Industrial and Engineering Chemistry, 2013. 19(3): p. 966-974.
    60. Zhao, X., Y. Tan, F. Wu, H. Niu, Z. Tang, Y. Cai, and J.P. Giesy, Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance. Science of The Total Environment, 2016. 571: p. 380-387.
    61. Sahai, A., N. Goswami, S. Kaushik, and S. Tripathi, Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Applied Surface Science, 2016. 390: p. 974-983.
    62. Li, S., J. Lind, C. Hefferan, R. Pokharel, U. Lienert, A. Rollett, and R. Suter, Three-dimensional plastic response in polycrystalline copper via near-field high-energy X-ray diffraction microscopy. Journal of Applied Crystallography, 2012. 45(6): p. 1098-1108.
    63. Raffi, M., S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, and M.M. ul Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 2010. 60(1): p. 75-80.
    64. Thamaphat, K., P. Limsuwan, and B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.), 2008. 42(5): p. 357-361.
    65. Peniche, C., D. Zaldívar, M. Pazos, S. Páz, A. Bulay, and J.S. Román, Study of the thermal degradation of poly (N‐vinyl‐2‐pyrrolidone) by thermogravimetry–FTIR. Journal of applied polymer science, 1993. 50(3): p. 485-493.
    66. Živković, Ž., D. Živković, and D. Grujičić, Kinetics and mechanism of the thermal decomposition of M (NO3)2· nH2O (M= Cu, Co, Ni). Journal of thermal analysis and calorimetry, 1998. 53(2): p. 617-623.
    67. Kim, J., M. Ishihara, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Applied physics letters, 2011. 98(9): p. 091502.
    68. Malesevic, A., R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, and C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, 2008. 19(30): p. 305604.
    69. Pimenta, M., G. Dresselhaus, M.S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics, 2007. 9(11): p. 1276-1290.
    70. Zhou, K., Y. Shi, S. Jiang, Y. Hu, and Z. Gui, Facile preparation of Cu2O/carbon sphere heterostructure with high photocatalytic activity. Materials Letters, 2013. 98: p. 213-216.
    71. Huang, T., J. Wu, Z. Zhao, T. Zeng, J. Zhang, A. Xu, X. Zhou, Y. Qi, J. Ren, and R. Zhou, Synthesis and photocatalytic performance of CuO-CeO2/Graphene Oxide. Materials Letters, 2016. 185: p. 503-506.
    72. Cornard, J.-P., C. Lapouge, and J.-C. Merlin, A DFT/TDDFT study of the structural and spectroscopic properties of Al (III) complexes with 4-nitrocatechol in acidic aqueous solution. Chemical Physics, 2007. 340(1): p. 273-282.
    73. Sever, M.J. and J.J. Wilker, Visible absorption spectra of metal–catecholate and metal–tironate complexes. Dalton transactions, 2004(7): p. 1061-1072.
    74. Park, H. and T.H. Han, Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors. Macromolecular Research, 2014. 22(8): p. 809-812.
    75. Vidhyadharan, B., I.I. Misnon, R.A. Aziz, K. Padmasree, M.M. Yusoff, and R. Jose, Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. Journal of Materials Chemistry A, 2014. 2(18): p. 6578-6588.
    76. Xu, P., J. Liu, T. Liu, K. Ye, K. Cheng, J. Yin, D. Cao, G. Wang, and Q. Li, Preparation of binder-free CuO/Cu2O/Cu composites: a novel electrode material for supercapacitor applications. RSC Advances, 2016. 6(34): p. 28270-28278.
    77. Rauda, I.E., V. Augustyn, B. Dunn, and S.H. Tolbert, Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Accounts of chemical research, 2013. 46(5): p. 1113-1124.
    78. Ates, M., M.A. Serin, I. Ekmen, and Y.N. Ertas, Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polymer Bulletin, 2015. 72(10): p. 2573-2589.
    79. Zhang, J., Y. Xu, Z. Liu, W. Yang, and J. Liu, A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC advances, 2015. 5(67): p. 54275-54282.
    80. Pawar, S.M., J. Kim, A.I. Inamdar, H. Woo, Y. Jo, B.S. Pawar, S. Cho, H. Kim, and H. Im, Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Scientific reports, 2016. 6.
    81. Haniff, M.A.S.M., S.M. Hafiz, K.A. Wahid, Z. Endut, M.I. Syono, N.M. Huang, S.A. Rahman, and I.A. Azid, Nitrogen-doped multiwalled carbon nanotubes decorated with copper (I) oxide nanoparticles with enhanced capacitive properties. Journal of Materials Science, 2017. 52(11): p. 6280-6290.

    無法下載圖示 全文公開日期 2022/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE