簡易檢索 / 詳目顯示

研究生: 胡漢彥
Han-Yen Hu
論文名稱: 三維列印輔助靜電紡絲技術於泌尿道疾病與組織再生支架之研究
The study of 3D printing assisted electrospinning technology in producing tissue regeneration scaffold for urological diseases
指導教授: 白孟宜
Meng-Yi Ba
口試委員: 于大雄
Dah-shyong Yu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 三維列印靜電紡絲蠶絲蛋白聚己內酯細胞載體組織重建泌尿道疾病
外文關鍵詞: 3D printing, electrospinning, fibroin, polycaprolactone, scaffold, tissue regeneration, urological diseases
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床上需要對長段尿道及輸尿管缺損患者進行組織重建。然而目前並無個人化平台以及適合之生物相容性材質可作為組織重建之用。期許高生物相容性支架能做為臨床泌尿道創傷患者組織再生可用之材料。靜電紡絲系統 (Electrospinning)為近年新興的奈米纖維製程技術,可直接且快速的將材料紡絲成奈米纖維,提高比表面積、孔隙率及具備有微奈米級孔洞結構,可根據材料的多元化應用在不同的領域;三維列印技術則能提供品質均一甚至客製化的支架。我們選用具有良好生物相容性之聚己內酯 (Polycaprolactone, PCL)及蠶絲蛋白 (SF)作為生物支架的材料,比較靜電紡絲 (ES)及三維列印結合靜電紡絲(3D-ES)為平台所製生物支架其物化性及生物相容性之差異。本實驗從蠶繭中萃取出蠶絲蛋白後再使用靜電紡絲系統及三維列印技術印製奈米纖維支架後,除了觀察材料表面結構以及物理化學性測試,另針對細胞的生物相容性及穿透能力作討論。在體外組織模式中,首先觀察細胞生長貼附於支架上情況,以及活體組織培養之狀況。在紐西蘭大白兔的動物模式中,進行單側輸尿管進行1/5置換(兔子輸尿管全長大約10-12公分),經6、7週後犧牲動物進行組織切片,並利用HE 及 Masson染色觀察其貼附生長情況。結果發現,在物理特性測試中,當SF的比例增加時,PCL-SF支架中奈米纖維孔的直徑和尺寸均增加、拉伸強度下降,降解速度無太大差異。在傅里葉轉換紅外光譜 (FTIR)分析中可以觀察到PCL及SF的對應譜峰,MTT結果表明,SF在支架中的比例增加有利於細胞增殖,總和上述條件我們選出PCL:SF=4:6為最佳混和比例。由於奈米纖維的直徑增加及孔洞的大小增加,觀察到結合三維列印後細胞在支架上的增殖速度明顯提升。離體組織實驗中PCL-SF支架顯示細胞可沿支架穩定生長兩週,且細胞大多沿著外緣生長。動物模式方面,在經過6、7週後可觀察到不同細胞沿著管壁外緣生長,由內而外依序為黏膜層、黏膜下層、肌肉層與漿膜層,而管壁內緣在近腎端只有黏膜層貼附生長,在膀胱端黏膜及肌肉層都有生長,但是在生物支架的內緣中段在7週的時間中細胞尚未生長貼附。
    本實驗證明 利用三維列印結合靜電紡絲系統可製作出適合細胞組織生長之4:6 PCL-SF支架,並在動物實驗中達到輸尿管重建之目的, 因此此類新載體可做為將來臨床泌尿道系統組織重建之應用。


    Clinically, tissue reconstruction is needed in patients with urethral and ureteral injury with long segment defects. However, there is no customized platform and suitable bio-compatibility materials to produce the tissue regeneration vehicle currently. We hope this customized scaffold could be a useful replacement material in tissue regeneration for urological trauma patients. Electrospinning (ES) system is a new nanofiber process technology in recent years. It can directly and quickly spin the material into nanofibers, improve the specific surface area, porosity and micro/nano-scale pore structure. 3D printing technology can provide uniform and customized brackets in different fields. Our study chooses highly bio-compatibility materials, silk fibroin (SF) and polycaprolactone (PCL) as bio-materials scaffolds respectively. The differences in physicochemical properties and biocompatibility of bio-scaffolds prepared by ES and 3D printing combined with electrospinning (3D-ES) were compared.
    SF powder was prepared from dissolved cocoons, then extracted by dialysis and lyophilized before study. Various ratios of PCL and SF nanofiber in formic acid were generated by ES or self-designed 3D-ES platform. The physical and biological characteristics were assayed by SEM, degradation test, tension test and cell attachment assay of fibroblasts and urothelial cells on various nanofibers of PCL-SF. The ex vivo resected ureteral tissue was anastomosed with the PCL-SF scaffolds and cultured in ex vivo bath for two weeks. The cellular growth on scaffold was observed microscopically by HE stain. In the New Zealand white rabbit model, we performed a 1/5 ratio (2 cm) replacement of the unilateral ureter(rabbit ureter is about 10 cm length). After 6 and 7 weeks, the animals were sacrificed and the scaffolds were taken out for tissue sectioning, and the cellular growth was observed by HE and Masson staining.
    In physical assay, both the diameter and size of nanofiber holes were increased in the PCL-SF scaffold when the proportion of SF is increased. There is no difference for degradation rate under cell culture medium soaking for 8 weeks which was 10% less in dry weight. The tensile strength of PCL-SF nanofibers increased when the PCL ratio increased. Typical spectrum peaks for PCL and SF were observed in the spectra of PCL/SF blends. MTT result indicates that the incorporation of SF into PCL was beneficial for cell proliferation and parallel to the percentage of SF ratio and 4:6 of PCL-SF scaffold is the best ratio for cellular growth. Higher cellular proliferation was seen in 4:6 of 3D-ES PCL-SF scaffolds than 4:6 of ES PCL-SF scaffolds due to increased diameter of nanofibers and size of holes. The PCL-SF scaffold anastomosis in ex vivo bath showed cellular growth stably along the scaffold for two weeks and most of the cells grow along the outboard. In animal model, after 6 and 7 weeks, different cells can be observed to grow along the outboard of the scaffold, from the lumen outward: Mucosa, Submucosa, muscular layer and the serosa layer, mucosal layer growth in the scaffold inner edge of proximal (kidney) side, Mucosa and muscular layer growth in the scaffold inner edge of distal (bladder) side, However, in the middle of the inner edge of the scaffold, the cells had not grown yet till 7 weeks.
    In our study, 3D-ES produced 4:6 PCL-SF nanofiber scaffolds are suitable for cell tissue growth, and achieve the purpose of ureteral reconstruction in animal experiments. Therefore this new form scaffold can be used as clinical urinary tract tissue reconstruction in the future.

    中文摘要.................................................Ⅰ Abstract.................................................Ⅲ 誌謝.....................................................Ⅴ 圖表索引.................................................Ⅵ 壹、 緒論 1. 研究背景.........................................1 2. 研究動機及目的...................................1 3. 實驗流程.........................................2 貳、 文獻回顧 1. 組織工程.........................................4 2. 泌尿道組織工程...................................8 3. 靜電紡絲系統....................................10 4. 三維列印技術....................................14 5. 生醫材料........................................17 5.1 聚己內酯......................................18 5.2 蠶絲蛋白......................................20 參、 材料與方法..........................................23 1. 蠶絲蛋白萃取....................................28 2. 蠶絲蛋白混紡聚己內酯奈米支架製備................28 2.1 靜電紡絲系統.................................28 2.2 三維列印&靜電紡絲系統.......................29 3. 表面顯微結構觀察................................30 3.1 鍍金前處理...................................30 3.2 掃描式電子顯微鏡.............................31 4. 纖維直徑及孔洞分析..............................31 5. 拉伸強度測試....................................32 6. 降解測試........................................33 7. 表面官能基測定-傅里葉轉換紅外光譜(FTIR) ........34 8. 細胞培養........................................35 9. 細胞於不同SF/PCL混紡比例材料上的培養生長.......37 10. MTT assay-測試細胞於不同SF/PCL混紡比例材料上增殖能力........................................38 11. SEM觀察細胞於不同SF/PCL混紡比例材料上生長情形.39 12. 細胞穿透SF/PCL薄膜實驗( Calcein-AM & PI staining)..41 13. 體外輸尿管活體組織培養..........................42 14. 紐西蘭大白兔輸尿管節段置換實驗(segmental replacement of ureter in rabbit) .................................44 15. 冷凍切片........................................45 16. 組織標本固定、脫水、包埋與切片...................46 17. 蘇木紫-伊紅染色法-Hematoxylin & Eosin (H&E) Stain...48 18. 螢光染色( Calcein-AM & PI staining ) ................49 19. 馬森三色染色(Masson staining) .....................50 肆、 結果 1. 不同SF/PCL混紡比例薄膜電紡參數................51 2. SEM觀察不同SF/PCL混紡比例薄膜表面型態及Diameter J軟體分析........................................52 3. 利用FTIR分析不同SF/PCL混紡比例電紡薄膜表面化學組成..............................................55 4. 不同SF/PCL混紡比例電紡薄膜拉伸強度測試.........57 5. 不同SF/PCL混紡比例電紡薄膜於培養液中降解程度測試........................................58 6. 細胞於不同SF/PCL混紡比例電紡薄膜生長測試分析-MTT Assay/ SEM...................................... 59 7. 細胞於SF/PCL混紡薄膜穿透測試- Calcein-AM & PI staining.........................................62 8. 活體組織體外培養病理切片分析....................64 9. 紐西蘭大白兔輸尿管節段製換病理切片分析..........66 伍、 討論................................................69 陸、 結論................................................79 柒、 參考文獻............................................80 捌、 附錄................................................87

    柒 參考文獻
    1.Sack BS, Mauney JR, Estrada CR Jr., Silk fibroin scaffolds for urologic tissue engineering. Curr Urol Rep. 2016 February ; 17(2): 16.
    2.金岩主編,組織工程學,第四軍醫大學出版社,西安,第 3, 6 頁(2004)
    3.Rheinwald JG, Green H., Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 1975 Nov; 6(3):331-343.
    4.O’Connor N E, Mulliken J B, Banks-Schlegel S, et al., Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet, 1981, Jan 10; 1(8211):75-78.
    5.Yannas IV, Burke JF, Gordon PL, Huang C, Rubenstein RH., Design of an artificial skin. II. Control of chemical composition. J Biomed Mater Res. 1980 Mar;14(2):107-132.
    6.Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G. Vunjak-Novakovic G., Tissue engineering: biomedical applications., Tissue Eng. 1995 Summer;1(2):151-161.
    7.Charles A Vacanti, The history of tissue engineering. J Cell Mol Med. 2006 Jul-Sep; 10(3):569-576.
    8.李玉寶主編,生物醫學材料,化學工業出版社,北京,第128, 135, 137 頁(2003)
    9.Theoret C., Tissue engineering in wound repair: the three "R"s--repair, replace, regenerate. Vet Surg. 2009 Dec; 38(8):905-913.
    10.Chen F, Yoo JJ, Atala A., Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology. 1999 Sep; 54(3):407-410.
    11.Bazeed MA, Thüroff JW, Schmidt RA, Tanagho EA., New treatment for urethral strictures. Urology. 1983 Jan; 21(1):53-57.
    12.Olsen L, Bowald S, Busch C, Carlsten J, Eriksson I., Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol. 1992; 26(4):323-326.
    13.Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR., Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol. 1992 Aug; 148 (2 Pt 2):658-662.
    14.Sievert KD, Bakircioglu ME, Nunes L, Tu R, Dahiya R, Tanagho EA., Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol. 2000 Jun; 163(6):1958-1965.
    15.John F Cooley, Apparatus for electrically dispersing fluids. US692631A, 1902.
    16.William James Morton, Method of dispersing fluids. US705691A, 1902.
    17.Formhals Anton. Process and apparatus for preparing artificial threads. US1975504A, 1934.
    18.Formhals Anton. Method and apparatus for spinning. US2160962A, 1939.
    19.Formhals Anton. Artificial thread and method of producing same. US2187306A, 1940.
    20.Taylor GI., Disintegration of water drops in an electric field, Proc.R. Soc. 1964 Feb; A 280(21):383-397.
    21.Cloupeau M., Prunet-Foch B., Electrostatic spraying of liquids in cone-jet mode. J. Electrostatics 1989 July; 22(2):135-159.
    22.Reneker DH., Chun I., Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology. 1996 Sep; 7(3): 216-223.
    23.Fong H., Chun I., Reneker DH., Beaded nanofibers formed during electrospinning. Polymer. 1999 July; 40(16):4585-4592.
    24.Adnan Haider,Sajjad Haider,Inn-Kyu Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2015 Dec; 11(8):1165-1188.
    25.Lee KH., Kim HY., Bang HJ., Jung YH., Lee SG., The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 2003 June; 44(14):4029-4034.
    26.Zong X., Kim K., Fang D., Ran S., Hsiao BS., Chu B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. 2002 July; 43(16):4403-4412.
    27.An Introduction To Electrospinning And Nanofibers. Ramakrishna S, Fujihara K, Teo WE, Lim TC and Ma Z, 2005.
    28.Lee KH, Kim HY, Ryu YJ, Kim KW, Choi SW, Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. Journal of Polymer Science: Part B: Polymer Physics, 2003 Apr; 41(11):1256 –1262.
    29.3D Printing Technology and Medical Science. Rajot Chakraborty, 2013.
    30.Greiner AM, Jäckel M, Scheiwe AC, Stamow DR, Autenrieth TJ, Lahann J, Franz CM, Bastmeyer M. Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion. Biomaterials. 2014 Jan; 35(2):611-619.
    31.K. Binder, PhD thesis, In Situ Bioprinting of the Skin. Wake Forest University, 2011.
    32.Ng WL, Wang S, Yeong WY, Naing MW. Skin Bioprinting: Impending Reality or Fantasy? Trends Biotechnol. 2016 Sep; 34(9):689-699.
    33.Visscher DO, Farré-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, Wolff J, Advances in Bioprinting Technologies for Craniofacial Reconstruction, Trends Biotechnol. Trends Biotechnol. 2016 Sep; 34(9):700-710.
    34.Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A, Zhao W. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017 Mar; 1(50):154-164
    35.沈家瑞、劉昭麟,極具前景的生醫材料!,科學月刊 553期-幾丁質大革命
    36.Griffith LG, Polymeric biomaterials. Acta Materialia. 2000 Jan; 48(1):263-277
    37.Gerald Scott, "Green" polymers. Polymer Degradation and Stability, 2000 Apr; 68(1):1-7
    38.Eberli D, Freitas Filho L, Atala A, Yoo JJ, Composite scaffolds for the engineering of hollow organs and tissues. Methods. 2009 Feb; 47(2):109-115.
    39.Wikipedia Free Encyclopedia. http://en.wikipedia.org/wiki/Main_Page
    40.戈進杰(主編)(2002)。生物降解高分子材料及其應用(P.295)。北京:化學工業出 版社。
    41.Koleske JV. Blends containing poly(ε-caprolactone) and related polymers. Polymer Blends. 1978(2): 369-389.
    42.Nakamura M, Hikida M, Nakano T. Concentration and molecular weight dependency of rabbit corneal epithelial wound healing on hyaluronan. Curr Eye Res. 1992 Oct;11(10):981-986.
    43.Jameela SR, Suma N, Misra A, Raghuvanshi R, Ganga S, Jayakrishnan A. Poly (ε-Caprolactone) microspheres as a vaccine carrier. Current Sciences. 1996 70(7):669-671.
    44.Pankajakshan D, Krishnan V K, Krishnan LK. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering. Biofabrication. 2010 Dec; 2(4):041001.
    45.Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013 Apr; 65(4):457-470.
    46.Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Michael L Lovett & David L Kaplan, Materials Fabrication from Bombyx mori Silk Fibroin. Nat Protoc. 2011 Sep 22;6(10):1612-1631.
    47.Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh Migr. 2008 Jan-Mar; 2(1):9-16.
    48.Moroni L, Boland T, Burdick JA, De Maria C, Derby B, et al. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 2018 Apr; 36(4):384-402.
    49.Jo JH, Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials, J Biomed Mater Res B Appl Biomater. 2009 Oct; 91(1):213-220.
    50.Kunz RI, Brancalhão RM, Ribeiro LF, Natali MR. Silkworm Sericin: Properties and Biomedical Applications. BioMed Research International 2016 Nov 14,1-19
    51.Omenetto FG, Kaplan DL. New Opportunities for an Ancient Material. Science. 2010 Jul 30;329(5991):528-531.
    52.Yong-Wei Zhang, Ming-Yong Han, Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science 2015 Jul 46:86-110.
    53.JA Zhou, CB Cao, XL Ma, L. Hu, LA Chen, CR Wang, In vitro and in vivo degradation behavior of aqueous-derived electrospun silk fibroin scaffolds. Polym. Degrad. Stab. 2010 Sep; 95(9):1679–1685.
    54.Cai J, Jiang J, Mo X, Chen S. Effect of silk fibroin/poly ( L-lactic acid-co-e-caprolactone) nanofibrous scaffold on tendon-bone healing of rabbits. Chinese Journal of Reparative and Reconstructive Surgery, 2017 Aug 1; 31(8):957-962.
    55.Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz JA, et al.Soft-matrices based on silk fibroin and alginate for tissue engineering. Int J Biol Macromol. 2016 Dec; 93(Pt B):1420-1431.
    56.Kapoor S, Kundu SC. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016 Feb; 31:17-32.
    57.Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2018 Mar 1; 84:140-147.
    58.Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, et al. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017 Apr; 153(4):924-932.
    59.Izabella Rajzer, Anna Kurowska, Adam Jabłoński, Samuel Jatteau, Mateusz Śliwka, et al, Layered gelatin/PLLA scaffolds fabricated by electrospinning and 3D printing- for nasal cartilages and subchondral bone reconstruction, Materials & Design. 2018 Oct; 155(5): 297-306.
    60.Liu CX, Liao YF, Li HL, Zheng SB. Cytocompatibility of silk fibroin film with rabbit urinary bladder transitional epithelial cells in vitro. J Sounth Med univ, 2008 Feb; 28(2):216-8.
    61.Fan H, Liu H, Toh SL, Goh JC. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009 Oct; 30(28):4967-77.
    62.Meinel L, Kaplan DL, Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev. 2012 Sep; 64(12):1111-1122.
    63.Atala A. Tissue engineering of human bladder. Br Med Bull. 2011; 97:81-104.
    64.Algarrahi K, Affas S, Sack BS, Yang X, Costa K, et al. Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. J Surg Res. 2018 Sep;229: 192-199.
    65.Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, Alcaraz A, Cenis JL, Nicolás FJ. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One. 2012; 7(7):e42271.
    66.Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol. 2018 Apr; 5(2):57-68.
    67.Zhao Z, Yu H, Xiao F, Wang X, Yang S, Li S. Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering. J Surg Res. 2012 Nov; 178(1):55-62.
    68.Liao W, Yang S, Song C, Li X, Li Y, Xiong Y. Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix. Transplant Proc. 2013 Mar; 45(2):730-734.
    69.Meng LC, Liao WB, Yang SX, Xiong YH, Song C, Liu LQ. Seeding homologous adipose-derived stem cells and bladder smooth muscle cells into bladder submucosa matrix for reconstructing the ureter in a rabbit model. Transplant Proc. 2015 Dec; 47(10):3002-11.
    70.Fu WJ, Xu YD, Wang ZX, Li G, Shi JG, Cui FZ, Zhang Y, Zhang X. New ureteral scaffold constructed with composite poly (l-lactic acid)-collagen and urothelial cells by new centrifugal seeding system. J Biomed Mater Res A. 2012 Jul; 100(7):1725-33.
    71.Xu Y, Fu W, Li G, Shi J, Tan H, Hu K, Cui F, Lin Q, Zhang X. Autologous urothelial cells transplantation onto a prefabricated capsular stent for tissue engineered ureteral reconstruction. J Mater Sci Mater Med. 2012 Apr; 23(4):1119-1128.
    72.Shi JG, Fu WJ, Wang XX, Xu YD, Li G, et al. Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds. J Biomed Mater Res A. 2012 Oct;100(10):2612-22
    73.de Jonge P, Simaioforidis V, Geutjes P, Oosterwijk E, Feitz W. Ureteral reconstruction with reinforced collagen scaffolds in a porcine model, J Tissue Eng Regen Med. 2018 Jan;12(1):80-88.
    74.Lv X, Feng C, Liu Y, Peng X, Chen S, et al. A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction, Theranostics. 2018 May 9; 8(11):3153-3163.

    QR CODE