簡易檢索 / 詳目顯示

研究生: 路國明
Kuo-Ming Lu
論文名稱: 雷射熔化製程應用於金屬粉末在尺寸精度與表面完整性之研究
Investigation of selective laser melting using metallic powders on the dimensional accuracy and surface integrity
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 郭俊良
Chun-Liang Kuo
陳學仕
Hsueh-Shih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 選擇性雷射熔化3D列印田口實驗方法變異數分析鈦合金 (Ti-6Al-4V)不鏽鋼 (SST316L)。
外文關鍵詞: Selective laser melting, Ti-6Al-4V, SST316L, 3D printing, Taguchi method, ANOVA
相關次數: 點閱:341下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之創新為在既有金屬3D列印製程上建立不同金屬為對應基材,並於此基材上堆疊出建立的特徵,進而分析此特徵之尺寸精度及表面完整性。其中利用田口實驗方法 (Taguchi Methods, L9 Test array) 與變異數分析 (ANOVA),找出鈦合金 (Ti-6Al-4V) 與不鏽鋼 (SST316L) 兩種合金材料透過選擇性雷射熔化 (SLM) 分別燒結於鈦 (Commercial pure, G1) 與不鏽鋼 (AISI316) 異質金屬工件之最佳製程參數組合。本實驗之參數組合參考三種可變因子、三水平 (雷射瓦數:100-200 W;脈衝時間:50-100 μs;焦點間距:35-70 μm) 的田口L9直交表,固定因子為:雷射掃描速度 (Ti-6Al-4V:70 mm/s,SST316L:220 mm/s) 、堆疊層厚 (Ti-6Al-4V:50 μm,SST316L:30 μm)、掃描間距 (Ti-6Al-4V:110 μm,SST316L:125 μm)。於雷射熔化製程後,觀察九種參數在密度、空孔率、尺寸變異 (直徑和高度)、拉伸應力等各項定量指標在工件上的變化,並從中找出最佳雷射熔化參數;而定性指標為顯微硬度、顯微組織、合金成分變異。前者利用統計分析方法中的變異數分析 (ANOVA),找出各項指標中之顯著因子;後者則利用金相顯微鏡觀察、分析雷射熔合粉末之金屬顯微組織變化,最後將各指標進行分析與結論。


    This study presents a state-of-the-art concept to layer metallic powder on a metallic carrier which is in different constituent. This may inducing a new application on repairing or composing metallic features in a composite forms. The preferred selective laser melting (SLM) process parameters for Ti alloy (Ti-6Al-4V) and stainless steel (SST316L) stacking onto heterogeneous metals Titanium (commercial pure, G1) and stainless steel (AISI316) respectively are examining by Taguchi Method (L9 Test array) and ANOVA. The parameter combinations were implemented by Taguchi L9 orthogonal array of three-factor model with fixed factors, such as laser scanning speed (Ti: 570 mm/s, SST316L: 220 mm/s), layer thickness (Ti: 50 μm, SST316L: 30 μm) and scanning spacing (Ti: 110 μm, SST316 L: 125 μm) . After SLM process, this study disclosed the best laser melting parameters by quantitatively observing the indexes, such as density, porosity, dimensional deviations (diameter and height) and tensile stress. etc., upon nine types of process parameters. Moreover, qualitative indexes includes micro-hardness, metallographic analysis and element changes in alloy. The former was performed by ANOVA to find out main factors within all indexes and the latter was executed by metallographic examination.

    摘要 I Abstract II 誌謝 IV 圖目錄 VII 表目錄 X 第一章 研究介紹 1 1.1 研究背景 1 1.2 研究目的 4 1.3 論文架構 5 第二章 文獻回顧 7 2.1 選擇性雷射熔化 (SLM) 文獻回顧 7 2.1.1 金屬材料在選擇性雷射熔化 (SLM) 上的發展 7 2.1.2 金屬粉末在SLM製程中之物理特性 8 2.1.3 雷射種類 11 2.1.4 SLM製程工件之幾何尺寸 12 2.1.5 SLM製程之掃描策略 13 2.1.6 選擇性雷射熔化工件之材料機械性質 14 2.1.7 選擇性雷射熔化工件補正 15 2.1.8 實驗最佳化 16 第三章 實驗工作 17 3.1 實驗工作簡介 17 3.2 實驗材料 17 3.3 實驗設備 23 3.3.1 選擇性雷射熔化設備 (SLM) 23 3.3.2 密度量測設備 27 3.3.3 表面形貌與幾何誤差量測 30 3.3.4 材料機械性質檢測 31 3.3.5 金相與微結構觀測 33 3.4 實驗設計 35 3.4.1 Phase A 鈦合金 (Ti-6Al-4V) 選擇性雷射熔化實驗 35 3.4.2 Phase B不鏽鋼 (SST316L) 選擇性雷射熔化實驗 36 3.4.3 實驗操作流程與統計分析 38 3.4.4 單位體積之能量密度分析 39 第四章 實驗結果與討論 41 4.1 Phase A 鈦合金 (Ti-6Al-4V) 不同參數下之雷射熔化性質 41 4.1.1 鈦合金 (Ti-6Al-4V) 密度與氣孔 41 4.1.2 鈦合金 (Ti-6Al-4V) 尺寸精度 43 4.1.3 鈦合金 (Ti-6Al-4V) 拉伸強度 48 4.1.4 鈦合金 (Ti-6Al-4V) 顯微組織 50 4.2 Phase B 不鏽鋼 (SST316L) 不同參數下之雷射熔化性質 53 4.2.1 不鏽鋼 (SST316L) 密度與氣孔 53 4.2.2 不鏽鋼 (SST316L) 尺寸精度 55 4.2.3 不鏽鋼 (SST316L) 拉伸強度 59 第五章 結論與未來展望 63 5.1 文獻回顧總結 63 5.2 研究結果總結 63 5.2.1鈦合金 (Ti-6Al-4V) 之研究結果 63 5.2.2不鏽鋼(SST316L)之研究結果 64 5.3 未來展望 65 參考文獻 66

    [1]. B. N. Dahotre, S. P. Harimakar, Laser fabrication and machining for material, Springer, 2008.
    [2]. J. P. Kruth, “Material Incress Manufacturing by Rapid Prototyping Techniques,” CIRP Annals-Manufacturing Technology 40, pp.603-614, 1991.
    [3]. J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, M. Rombouts, “Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping Journal 11, pp.26-36, 2005.
    [4]. T. Wohlers, Wohlers Report 2015, Wholers Associates, 2015.
    [5]. H. Attar, M. Calin, L. C. Zhang, S. Scudino, J. Eckert, “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium,” Materials Science & Engineering: A 593, pp.170-177, 2014.
    [6]. M. Wong, S. Tsopanos, C. J. Sutcliffe and I. Owen, “Selective laser melting of heat transfer devices,” Rapid Prototyping Journal 13, pp. 291-297, 2007.
    [7]. L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, and R. B. Wicker, “Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting,” Hindawi Publishing Corporation International Journal of Biomaterials 2012, 2012.
    [8]. K. Osakada, and M. Shiomi, “Flexible manufacturing of metallic products by selective laser melting of powder,” International Journal of Machine Tools and Manufacture 46, pp.1188-1193, 2006.
    [9]. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, “The manufacturing of hard tools from metallic powders by selective laser melting,” Journal of Materials Processing Technology 111, pp.210-213, 2001.
    [10]. M. Rombouts, J. P. Kruth, L. Froyen, P. Mercelis, “Fundamentals of Selective Laser Melting of alloyed steel powders,” CIRP Annals- Manufacturing Technology 55, pp.187-192, 2006.
    [11]. J. P. Kruth, G. Levy, F. Klocke, T. H. C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing,” CIRP Annals-Manufacturing Technology 56, pp.730-759, 2007.
    [12]. D. Gu, and Y. Shen, “Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods,” Materials and Design 30, pp.2903-2910, 2009.
    [13]. S. Das, “Physical Aspects of Process Control in Selective Laser Sintering of Metals,” Advanced Engineering Materials 5, pp.701-711, 2003.
    [14]. J. P. Kruth, B. Vandenbroucke, V. J. Van, P. Mercelis, “Benchmarking of different SLS/SLM processes as Rapid Manufacturing techniques,” Polymers & Moulds Innovations, pp.20-23, 2005.
    [15]. J. P. Kruth, L. Froyen, V. Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, “Selective laser melting of iron-based powder,” Journal of Materials Processing Technology 149, pp.616-622, 2004.
    [16]. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, “Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting,” Applied Surface Science 256, pp.4350-4356, 2010.
    [17]. W. O'Neill, C. J. Sutcliffe, R. Morgan, A. Landsborough, K. K. B. Hon, “Investigation on Multi-Layer Direct Metal Laser Sintering of 316L Stainless Steel Powder Beds,” CIRP Annals-Manufacturing Technology 48, pp.151-154, 1999.
    [18]. R. Morgan, C. J. Sutcliffe, and W. O'Neill, “Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives,” Journal of Materials Science 39, pp.1195-1205, 2004.
    [19]. I. Tolosa, F. Garciandía, F. Zubiri, “Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies,” The International Journal of Advanced Manufacturing Technology 51, pp.639-647, 2010.
    [20]. R. Paul, and S. Anand, “Optimization of layered manufacturing process for reducing form errors with minimal support structures,” Journal of Manufacturing Systems 36, pp.231-243, 2015.
    [21]. A. Farzadi, V. Waran, M. Solati-Hashjin, Z. A. A. Rahman, M. Asadi, N. A. A. Osman, “Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering,” Ceramics International 41, pp.8320-8330, 2015.
    [22]. T. Wohlers, Wohlers Report 2014, Wholers Associates, 2014.
    [23]. N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, C. Tuck, “Reducing porosity in AlSi10Mg parts processed by selective laser melting,” Additive Manufacturing 1-4, pp.77-86, 2014.
    [24]. C. Qiu, N. J. E. Adkins, M. M. Attallah, “Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V,” Materials Science & Engineering: A 578, pp.230-239, 2013.
    [25]. P. Edwards, M. Ramulu, “Fatigue performance evaluation of selective laser melted Ti-6Al-4V,” Materials Science & Engineering: A 598, pp.327-337, 2014.
    [26]. J. F. Lancaster, The Physics of Welding, 2nd edition, The International Institute of Welding, Pergamon Press, Oxford, 1986.
    [27]. S. Z. Beer, M. Dekker, Liquid metals chemistry and physics, New York, 1972.
    [28]. Y. Li, D. Gu, “Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder,” Materials and Design 63, pp.856-867, 2014.
    [29]. P. Edwards, M. Ramulu, “Fatigue performance evaluation of selective laser melted Ti–6Al–4V,” Materials Science and Engineering: A 598, pp.327-337, 2014.
    [30]. S. K. Ghosh, K. Bandyopadhyay, P. Saha, “Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique-Optimization of process parameters,” Materials Characterization 93, pp.68-78, 2014.
    [31]. 林三寶,雷射原理與應用,台北巿:全華,1987。
    [32]. 從範例學MINITAB統計分析與應用,博碩文化,2013。
    [33]. Asm, specific material ASTM B265-10, Gr. 1, NTUST, TAIPEI, 2015, Asm, The United States of America
    [34]. Asm, specific material AISI Type 316 stainless steel, NTUST, TAIPEI, 2015, Asm, The United States of America
    [35]. Renishaw, AM250 metal additive manufacturing (3D printing) system, NTUST, TAIPEI, 2015, Renishaw, United Kindom.
    [36]. Donald R.Askeland (1996)。材料科學與工程,第三版(蔡丕樁、蔡明雄、陳文照、廖金喜,譯)。台北:全華科技圖書。(原著第三版出版於1993年)。
    [37]. http://technical-journal.thegoldsmiths.co.uk/wp-content/uploads/2013
    /08/Tech-Bulletin-No3.pdf
    [38]. http://www.ilt.fraunhofer.de/content/dam/ilt/en/documents/annual_rep orts/JB11/JB11_P87.pdf
    [39]. http://www.industrial-lasers.com/articles/2011/02/selective-laser-melt
    ing.html

    QR CODE