簡易檢索 / 詳目顯示

研究生: 沈家禾
Jia-He Shen
論文名稱: 應用於柴油引擎啟動機之馬達設計
Design of a Motor for Diesel Engine Starters
指導教授: 蕭鈞毓
Chun-Yu Hsiao
辜志承
Jyh-Cherng Gu
口試委員: 辜志承
Jyh-Cherng Gu
洪聯馨
Lain-Shing Hung
蕭鈞毓
Chun-Yu Hsiao
蕭弘清
Horng-Ching Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 121
中文關鍵詞: 有限元素分析啟動馬達田口法基因演算法切換式磁 阻馬達永磁同步馬達
外文關鍵詞: finite element analysis, starter motor, Taguchi method, genetic algorithm, switched reluctance motor, permanent magnet synchronous motor
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽柴油車或大樓緊急發電機的啟動,常需借助一組專用的起動馬達來帶動引擎,傳統啟動馬達的磁場是以電磁鐵方式產生的,所以當磁場繞組通過大電流時,會有較大的銅損產生,故電磁鐵激磁式之馬達整體效率相對會較低。本論文旨在探討更有效、高效率的啟動機結構設計,研究中首先以市售的啟動馬達作為參考機型,對參考機型建模與還原,在還原的過程中,發現模擬數據與實測數據有不小的差異,經過分析相關論文與手冊後,發現造成模擬與實測不同的原因為電刷偏移的影響。
    接下來將激磁繞組的部分改為高剩磁的永磁材料,少了激磁繞組的部分,可使結構更加的精簡,並且提高電機的功率密度,在轉子結構與參考機型相同的條件下,將定子使用永久磁鐵替代,分析永磁型與參考機型輸出結果的不同,永磁型直流機的輸出功率與參考機型的7.08 kW相比提升2.4 kW。而後針對永磁型直流機使用田口法最佳化與基因演算法最佳化,使永磁式直流機的最大輸出功率能夠上升,最終模擬兩種最佳化的結果都能夠使最大輸出功率提升,田口法最佳化最大輸出功率為9.72 kW,經基因演算法法最佳化後的輸出功率可以達到9.80 kW。
    研究中最後設計出兩種機型,分別為永磁同步馬達與切換式磁阻馬達,經過模擬分析後,兩者的最大輸出功率分別為28.20 kW與11.11 kW。在分析完四種機型後,也評估了四種機型的成本效益與功率密度,成本效益以切換式磁阻馬達的509.6 W/USD為最佳;而功率密度的評比上,則以永磁同步馬達的27.1 W/cm3為最好。


    The start of a diesel engine or building emergency generator often requires a starter motor to drive the engine. The magnetic field of conventional starter motor is generated by electromagnet, so when the magnetic field winding passes through a high current, there will be a large copper loss, so the overall efficiency of the electromagnet excited motor is relatively low. This thesis aims to investigate the design of a more efficient starter structure. In this study, the commercially available starter motor is used as a reference model, and the modeling and restoration of the reference model are carried out.
    The alternative means of magnetic field is to replace the excitation winding with a high remanence permanent magnet material, which reduces the excitation winding part and makes the structure more compact, and increases the power density of the motor. Under the condition that the rotor structure is the same as that of the reference model, the stator is replaced by a permanent magnet. The output power of the permanent magnet type DC machine (PMDC) is increased by 2.4 kW compared to 7.08 kW of the reference model. Then, the maximum output power of the PMDC can be increased by using the Taguchi method optimization and the genetic algorithm optimization for the PMDC. The maximum output power optimized by Taguchi method is 9.72 kW, and the output power optimized by genetic algorithm method can reach 9.80 kW.
    In the study, two models were further investigated and designed, a permanent magnet synchronous motor (PMSM) and a switched reluctance motor (SRM), and their maximum output power was 28.20 kW and 11.11 kW respectively from computer simulations. After analyzing the four motor models, the cost effectiveness and power density of the four models were also evaluated. The cost effectiveness of the SRM was the best at 509.6 W/USD, while the power density was the best at 27.1 W/cm3 for the PMSM, may more suitable to be starter for diesel engines.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號索引 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 相關文獻回顧 5 1.3 本文大綱 7 第二章 參考原型機還原與永磁型直流馬達分析 8 2.1 前言 8 2.2 直流馬達工作原理說明與輸出方程式推導 8 2.2.1 直流馬達之反電動勢方程式推導 9 2.2.2 直流馬達之轉矩方程式推導 11 2.2.3 直流馬達最大輸出功率方程式推導 13 2.3 參考原型機還原分析 15 2.3.1 參考原型機規格與結構 15 2.3.2 直接驅動系統與減速機系統應用於啟動馬達 18 2.3.3 參考原型機特性分析 19 2.3.4 模擬結果與實測比較 21 2.3.5 電樞反應與其影響 24 2.3.6 電刷偏移結果 25 2.4 永磁型直流機設計與分析 28 2.4.1 永磁型直流機規格與結構 28 2.4.2 永磁型直流機特性分析 30 2.4.3 模擬之參考原型機與永磁型直流機比較 32 2.5 結語 37 第三章 電機性能最佳化方法的分析與運用 38 3.1 前言 38 3.2 田口方法最佳化 38 3.2.1 直交表的說明與建立方式 38 3.2.2 訊號雜訊比分析 42 3.2.3 永磁式直流馬達田口實驗因子與水準選擇 44 3.2.4 田口實驗最佳化分析 50 3.2.5 田口最佳化設計之輸出特性分析 53 3.3 基因演算法最佳化 55 3.3.1 基因演算法因子選擇 59 3.3.2 基因演算法最佳化結果 60 3.4 兩種最佳化方法比較 63 3.5 結語 65 第四章 其他可行替代機型設計與分析 66 4.1 前言 66 4.2 永磁同步馬達主要結構與設計分析 67 4.2.1 永磁同步馬達數學模型 67 4.2.2 永磁同步馬達分析 69 4.3 切換式磁阻馬達主要結構與設計分析 76 4.3.1 切換式磁阻馬達優勢 77 4.3.2 切換式磁阻馬達數學模型 78 4.3.3 最小轉矩漣波控制 81 4.3.4 切換式磁阻馬達分析 85 4.4 結語 89 第五章 各種機型效益比較與評估 90 5.1 前言 90 5.2 四種機型之輸出功率比較 90 5.3 四種機型之生產成本與產品重量比較 91 5.4 結語 93 第六章 結論與建議 95 6.1 結論 95 6.2 未來研究建議 96

    [1] CAT. "DIESEL GENERATOR SETS C4.4 (60 Hz)." cat.com. https://www.cat.com/en_US/products/new/power-systems/electric-power/diesel-generator-sets/1000028956.html (accessed Apr. 20, 2021).
    [2] CAT. "Industrial Diesel Engines C2.8." cat.com. https://www.cat.com/en_MX/products/new/power-systems/industrial/industrial-diesel-engines/1000023940.html (accessed Apr. 20, 2021).
    [3] R. B. GmbH, "Starting systems," in Bosch Automotive Electrics and Automotive Electronics: Systems and Components, Networking and Hybrid Drive. Wiesbaden: Springer Fachmedien Wiesbaden, 2014, pp. 462-485.
    [4] J. Lackner, H. Schumacher, and H. Grieshabe, "Areas of use for diesel engines," in Diesel Engine Management: Systems and Components, K. Reif Ed. Wiesbaden: Springer Fachmedien Wiesbaden, 2014, pp. 12-15.
    [5] 機動車輛登記數。臺北市:交通部。
    [6] iOR. "List of common conversion factors (Engineering conversion factors)." ior.com.au. http://www.ior.com.au/ecflist.html (accessed Apr. 15, 2021).
    [7] Panasonic. "Panasonic NCR18650B." batteryspace.com. http://industrial.panasonic.com/lecs/www-data/pdf2/ACA4000/ACA4000CE417.pdf (accessed Apr. 15, 2021)
    [8] Delco Remy. "Delco Remy 39MT™ Heavy Duty Gear Reduction Starter." delcoremy.com. http://www.delcoremy.com/starters/find-by-model-family/39mt-gear-reduction-starter (accessed Jun. 22, 2021)
    [9] "Requirements of the Starting System." what-when-how.com. https://what-when-how.com/automobile/requirements-of-the-starting-system-automobile/ (accessed May 10, 2021)
    [10] K. T. Chau, C. C. Chan, and C. Liu, "Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles," IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2246-2257, 2008, doi: 10.1109/TIE.2008.918403.
    [11] J. M. Miller, A. R. Gale, P. J. McCleer, F. Leonardi, and J. H. Lang, "Starter-alternator for hybrid electric vehicle: comparison of induction and variable reluctance machines and drives," in Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), 12-15 Oct. 1998, vol. 1, pp. 513-523, doi: 10.1109/IAS.1998.732360.
    [12] S. Jain and L. Kumar, "31 - Fundamentals of power electronics controlled electric propulsion," in Power Electronics Handbook (Fourth Edition), M. H. Rashid Ed.: Butterworth-Heinemann, 2018, pp. 1023-1065.
    [13] 鄭竹軒(民109)。三相永磁同步波浪發電機設計與研製(未出版之碩士論文)。國立臺灣科技大學,臺北市。
    [14] K. Sung-Il, L. Ji-Young, K. Young-Kyoun, H. Jung-Pyo, Y. Hur, and J. Yeon-Hwan, "Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method," IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1796-1799, May 2005, doi: 10.1109/TMAG.2005.846478.
    [15] N. Bianchi and S. Bolognani, "Design optimisation of electric motors by genetic algorithms," IEE Proceedings - Electric Power Applications, vol. 145, no. 5, pp. 475-483, 1998, doi: 10.1049/ip-epa:19982166.
    [16] M. Mutluer and O. Bilgin, "Design optimization of PMSM by particle swarm optimization and genetic algorithm," in 2012 International Symposium on Innovations in Intelligent Systems and Applications, 2012, pp. 1-4, doi: 10.1109/INISTA.2012.6247024.
    [17] S. Mallik et al., "Efficiency and cost optimized design of an induction motor using genetic algorithm," IEEE Transactions on Industrial Electronics, vol. 64, no. 12, pp. 9854-9863, Dec 2017, doi: 10.1109/TIE.2017.2703687
    [18] M. F. Rahman, D. Patterson, A. Cheok, and R. Betz, "34 - Motor drives," in Power Electronics Handbook (Third Edition), M. H. Rashid Ed. Boston: Butterworth-Heinemann, 2011, p. 973.
    [19] I. Husain, "Minimization of torque ripple in SRM drives," IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 28-39, 2002, doi: 10.1109/41.982245.
    [20] X. D. Xue, K. W. E. Cheng, and S. L. Ho, "Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives," IEEE Transactions on Power Electronics, vol. 24, no. 9, pp. 2076-2090, 2009, doi: 10.1109/TPEL.2009.2019581.
    [21] R Nave. "DC Motor Operation." HyperPhysics. http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motdc.html (accessed May 25, 2021)
    [22] 呂理雄、何文德(民88)。電機設計。臺北市:全華出版社。
    [23] 王翊仲(民108)。應用於柴油引擎啟動機之混合激磁型 直流馬達特性分析與設計(未出版之碩士論文)。國立臺灣科技大學,臺北市。
    [24] Dipak Suthar. " What is Armature Reaction?" electricalidea.com. http://www.electricalidea.com/what-is-armature-reaction/ (accessed Apr. 25, 2021)
    [25] I. M. Gottlieb, Electric Motors & Control Techniques. TAB Books, 1994.
    [26] G. Taguchi, S. Chowdhury, Y. Wu, S. Taguchi, and H. Yano, Taguchi's quality engineering handbook. Hoboken, N.J.: John Wiley & Sons; Livonia, Mich.: ASI Consulting Group (in English), 2005.
    [27] W. Wei-Chung, Y. Fan, and E. Atef, Electromagnetics and Antenna Optimization using Taguchi's Method. Morgan & Claypool, 2007, doi: 10.2200/S00083ED1V01Y200710CEM018.
    [28] R. N. Kacker, E. S. Lagergren, and J. J. Filliben, "Taguchi's orthogonal arrays are classical designs of experiments," (in eng), J Res Natl Inst Stand Technol, vol. 96, no. 5, pp. 577-591, Oct 1991, doi: 10.6028/jres.096.034.
    [29] M. Arnér, "Taguchi and his Ideas on Robust Design," in Statistical Robust Design, 2014, pp. 195-208.
    [30] N. Chaiyaratana and A. M. S. Zalzala, "Recent developments in evolutionary and genetic algorithms: theory and applications," in Second International Conference On Genetic Algorithms In Engineering Systems, 2-4 Sept. 1997 , pp. 270-277, doi: 10.1049/cp:19971192.
    [31] S. S. Rao, Engineering optimization: theory and practice. John Wiley & Sons, 2019.
    [32] K. Sastry, D. Goldberg, and G. Kendall, "Genetic Algorithms," in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, E. K. Burke and G. Kendall Eds. Boston, MA: Springer US, 2005, pp. 97-125.
    [33] B. K. Bose, "Power electronics and motor drives recent progress and perspective," IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 581-588, 2009, doi: 10.1109/TIE.2008.2002726.
    [34] Y. Sato, S. Ishikawa, T. Okubo, M. Abe, and K. Tamai, "Development of high response motor and inverter system for the Nissan LEAF electric vehicle," SAE Technical Paper 2011-01-0350, 2011, doi: 10.4271/2011-01-0350.
    [35] V. P. Vujičić, "Minimization of torque ripple and copper losses in switched reluctance drive," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 388-399, 2012, doi: 10.1109/TPEL.2011.2158447.
    [36] R. Suryadevara and B. G. Fernandes, "Control techniques for torque ripple minimization in switched reluctance motor: An overview," in 2013 IEEE 8th International Conference on Industrial and Information Systems, 17-20 Dec. 2013, pp. 24-29, doi: 10.1109/ICIInfS.2013.6731949.
    [37] N. Zabihi and R. Gouws, "A review on switched reluctance machines for electric vehicles," in 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), 8-10 June 2016, pp. 799-804, doi: 10.1109/ISIE.2016.7744992.
    [38] E. P. Kennedy, "Control of switched reluctance machines," Ph.D. dissertation, Dublin City University, Dublin, Ireland, 2005.
    [39] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, "Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application," IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 988-997, 2017, doi:10.1109/TIE.2016.2618342.
    [40] 簡廷宇(民104)。小容量永磁無刷直流馬達之最佳化設計(未出版之碩士論文)。國立臺灣科技大學電機工程系,臺北市。

    無法下載圖示 全文公開日期 2031/09/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE