簡易檢索 / 詳目顯示

研究生: 林士傑
Shi-Jay Lin
論文名稱: 新型胸腰椎前方骨板固定器之有限元素分析
Finite Element Analysis for Newly Anterior Thoracolumbar Plate Fixator
指導教授: 趙振綱
Ching-kong Chao
口試委員: 徐錫靖
Hsi-ching Hsu
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 有限元素分析胸腰椎前方骨板固定器拉出強度分析彎曲強度分析椎骨螺絲夾角
外文關鍵詞: Finite element analysis, Anterior thoracolumbar instrumentation, Pullout analysis, Bending analysis, Bone screws angle
相關次數: 點閱:206下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊椎內固定器(spinal instrumentation)已廣泛地使用在治療人體之脊椎外傷、病變與退化。從臨床觀察中發現,板狀固定器發生失效(failure)模式為板型固定器與螺絲介面容易發生應力集中的現象,導致板狀固定器及螺釘容易斷裂或鬆脫(loosening),因此如何提升板型固定器與椎骨的結合強度,便成為脊椎內固定設計之重要課題。本研究的目的即評估骨板角度變化對此新設計之胸腰椎前方骨板固定器的影響。

    使用COSMOSWorks有限元素分析軟體建立拉出強度與彎曲強度的三維有限元素模型,探討七種骨板角度(0˚、5˚、10˚、15˚、20˚、25˚與30˚)以及市售常用的骨板角度22˚,進行討論及分析。在拉出強度有限元素分析中,在新型胸腰椎前方骨板固定器角度增加時,其拉出強度會明顯的增加,針對一般的椎骨螺絲與無螺紋情況的椎骨螺絲進行拉出強度的分析及討論,結果以接觸條件設定為結合的無螺牙情況椎骨螺絲之拉出強度較高,但兩種椎骨螺絲在其拉出強度與角度的趨勢幾乎是完全相同。在彎曲強度有限元素分析中,新型胸腰椎前方骨板固定器之螺絲孔與螺絲的von Mises應力值會隨著不同骨板角度而變化,隨著骨板角度增加新型胸腰椎前方骨板固定器的最大von Mises應力值會減少,因此,較大的骨板角度可以提供較低的von Mises應力值以及降低應力過度集中的現象。

    我們結論是增加骨板角度會提高脊椎前方骨板固定器拉出強度與彎曲強度,本論文之研究結果將提供給工程師與外科醫師有用的相關資訊。


    Spinal instrumentation has been widely used to treat the spinal trauma, disease and degradation. In clinical observation, the spinal fixator failed in the interface between the plate and screws because of the stress concentration. Therefore, designing the spinal implants with a sufficient strength was an important issue.The purpose of this study was to compare the different angle effect to the plate fixator.

    Three-dimensional finite element models for pullout and bending strength were developed by using COSMOSWorks. Seven types of the plate angle (0˚, 5˚, 10˚, 15˚, 20˚, 25˚ and 30˚) and one commercial type with a plate angle of 22˚ were discussed and analyzed. In the pullout analysis, increasing the plate angle could increase the pullout strength of new anterior thoracolumbar plate. Two kinds of bone screws were analyzed and discussed including the traditional bone screws and the unthreaded bone screws. The pullout strength of the traditional bone screws was greater than that of the unthreaded bone screws. Nevertheless, the tendency of these two kinds of screws was almost the same. In the bending analysis, the von Mises stress of the screw holes and the screws were changed by different plate angles. Increasing the plate angle would decrease the maximal von Mises stress of the implants. Therefore, the larger plate angle could provide the smaller von Mises stress and reduce the stress concentration.

    We concluded that increasing the plate angle would increase the pullout strength and bending strength of anterior thoracolumbar plate fixator. The results of this research may provide the useful information to engineers and surgeons.

    中文摘要........................................................................................ I 英文摘要........................................................................................ II 誌 謝.............................................................................................. III 目 錄.............................................................................................. IV 符號索引........................................................................................ VII 圖表索引........................................................................................ IX 第一章 緒論................................................................................... 1 1.1 研究背景、動機與目的.......................................................... 1 1.2 脊椎解剖學構造簡介.............................................................. 2 1.3 文獻回顧.................................................................................. 9 1.4 本文架構.................................................................................. 12 第二章 研究方法............................................................................ 13 2.1 有限元素法簡介....................................................................... 13 2.2 拉出強度的有限元素模型之建立........................................... 15 2.2.1 椎骨螺絲模型之建立............................................................ 15 2.2.2 新型脊椎前方骨板固定器角度改變模型之建立................ 15 2.2.3 人造假骨模型之建立............................................................ 16 2.2.4 整體模型之建立.................................................................... 16 2.3 彎曲強度的有限元素模型之建立............................................ 24 2.3.1 椎骨螺絲模型之建立............................................................. 24 2.3.2 新型脊椎前方骨板固定器角度改變模型之建立................. 24 2.3.3 綜合型模型(synthetic model)之建立................................... 25 2.3.4 整體模型之建立..................................................................... 26 2.4 有限元素分析............................................................................ 35 2.4.1 元素選擇與分割.................................................................... 35 2.4.2 材料性質的給定.................................................................... 36 2.4.3 接觸問題................................................................................ 37 2.4.3.1 接觸面設定......................................................................... 38 2.4.4 邊界條件(boundary condition)............................................ 39 2.5 破壞理論................................................................................... 43 2.6 理論計算................................................................................... 43 2.6.1 拉出強度理論計算................................................................ 43 2.6.2 彎曲強度理論計算................................................................ 44 第三章 結果..................................................................................... 49 3.1 拉出強度有限元素分析結果................................................... 49 3.1.1 收歛性分析............................................................................ 49 3.1.2 脊椎前方骨板固定器改變角度拉出強度分析結果............ 50 3.2 彎曲強度有限元素分析結果................................................... 59 3.2.1收歛性分析............................................................................. 59 3.2.2 脊椎前方骨板固定器改變角度彎曲強度分析結果............ 59 3.3 理論值計算結果....................................................................... 81 3.3.1 拉出強度理論值計算結果.................................................... 81 3.3.2 彎曲強度理論值計算結果.................................................... 81 第四章 討論..................................................................................... 83 4.1 骨板角度改變之拉出強度分析探討....................................... 83 4.2 骨板角度改變之拉出強度分析探討析................................... 86 第五章 結論與未來展望................................................................. 92 5.1 結論............................................................................................ 92 5.2 未來展望.................................................................................... 93 參考文獻........................................................................................... 94 作者簡介........................................................................................... 100

    [1]Pope MH. and Panjabi M., “Biomechanical definitions of spinal instability, ” Spine. Vol.10, No.3, pp.255-256 (1985).
    [2]Rohlmann A., Bergmann G. and Graichen F., “A spinal fixation device for in vivo load measurement,” Journal of Biomechanics. Vol.27, No.7, pp.961-967 (1994).
    [3]Lotz JC., Hu SS., Chiu DF., Yu M., Colliou O. and Poser RD., “Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine,” Spine. Vol.22, No.23, pp.2716-2723 (1997)
    [4]Riaz S., Fox R., Lavoie MV. and Mahood JK., “Vertebral body reconstruction for thoracolumbar spinal metastasis,” J Ayub Med Coll Abbottabad. Vol.18, pp.70-77 (2006).
    [5]Bailey SI., Bartolozzi P., Bertagnoli R., Boriani S., van Beurden AF., Coss AT., Friedl HP., Gurr KR., Halm H., Kruls HJ., Metz-Stavenhagen P. and Schulze KJ., “The BMW spinal fixator system. A preliminary report of a 2-year prospective, international multicenter study in a range of indications requiring surgical intervention for bone grafting and pedicle screw fixation,” Spine.Vol.21, No.17, pp.2006-2015 (1996).
    [6]Hong TH, An HS, Hwa JH, Yong JA, Won JY and BS JE, “Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model,” Spine. Vol.22, NO.3, pp.261-266 (1997).
    [7]Kotani Y., Cunningham BW., Parker LM., Kanayama KM., and McAfee PC., “Static and Fatigue Biomechanical Properties of Anterior Thoracolumbar Instrumentation Systems,” Spine. Vol.24, No.14, pp.1406-1413 (1999).
    [8]DeCoster TA., Heetderks DB., Downey DJ., Ferries JS. and Jones W., “Optimizing bone screw pullout force,” Journal of Orthopaedic Trauma. Vol.4, No.2, pp.169-174 (1990).
    [9]Lieberman IH., Khazim R. and Woodside T., “Anterior vertebral body screw pullout testing. A comparison of Zeiike, Kaneda, Universal Spine System, and Universal Spine System with pullout-resistant nut, ” Spine. Vol.23, No.8, pp.908-910 (1998).
    [10]Hadjipavlou A., Enker P., Dupuis P., Katzman S. and Silver J., “The causes of failure of lumbar transpedicular spinal instrumentation and fusion: a prospective study,” International Orthopaedics. Vol.20, No.l, pp.35-42 (1996).
    [11]McAfee PC., Wetland DJ. and Carlow JJ., “Survivorship analysis of pedicle spinal instrumentation,” Spine. Vol.16, No.8, pp.S422-427 (1991).
    [12]Blumenthal S. and Gill K., “Complications of the Wiltse Pedicle Screw Fixation System,” Spine. Vol.18, No.13, pp.1867-1871 (1993).
    [13]McLain RF., Sparling E. and Benson DR., “Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report,” Journal of Bone & Joint Surgery(Am). Vol.75, No.2, pp.162-167 (1993).
    [14]Wetzel FT., Brustein M., Phillips FM. and Trott S., “Hardware failure in an unconstrained lumbar pedicle screw system. A 2-year follow-up study,” Spine. Vol.24, No.11, pp.1138-1143 (1999).
    [15]Yerby SA., Ehteshami JR. and McLain RF., “Loading of pedicle screws within the vertebra,” Journal of Biomechanics. Vol.30, No.9, pp.951-954 (1997).
    [16]Rohlmann A., Riley LH 3rd., Bergmann G. and Graichen F., “In vitro load measurement using an instrumented spinal fixation device,” Medical Engineering & Physics. Vol.18, No.6, pp.485-488 (1996).
    [17]Hasegawa K., Takahashi HE., Uchiyama S., Hirano T., Hara T., Washio T., Sugiura T., Youkaichiya M. and Ikeda M., “An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine,” Spine. Vol.22, No.9, pp.958-963 (1997).
    [18]張昭強,「椎骨螺絲拉出強度之生物力學分析」,國立台灣科技大學機械工程研究所碩士論文(2002)
    [19]徐慶琪,「骨螺絲之結構設計與生物力學分析」國立台灣科技大學機械工程研究所博士論文(2005)
    [20]Reinhold M., Schwieger K., Goldhahn J., Linke B., Knop C., and Blauth M., “Influence of Screw Positioning in a New Anterior Spine Fixator on Implant Loosening in Osteoporotic Vertebrae,” Spine. Vol.31, No.4, pp.406-413(2006).
    [21]Netter, Frank H., “Atlas of human anatomy,4th ed, ” Philadelphia, PA:aunders/Elsevier (2006).
    [22]McAfee PC., Bohlman HH. and Yuan HA. “Anterior decompression of traumatic thoracolumbar fractures with incomplete neurological deficit using a retroperitoneal approach,” Journal of Bone & Joint Surgery(Am). Vol.67, pp.89-104 (1985).
    [23]Gurr KR., McAfee PC. and Shih CM. “Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model,” Journal of Bone & Joint Surgery(Am). Vol.70, pp.1182-1191 (1988).
    [24]Zdeblick TA., Shirado O., McAfee PC., deGroot H. and Warden KE. “Anterior spinal fixation after lumbar corpectomy. A study in dogs, ” Journal of Bone & Joint Surgery(Am). Vol.73, pp.527-534 (1991).
    [25]Cunningham BW., Sefter JC., Shono Y. and McAfee PC. “Static and cyclical biomechanical analysis of pedical screw spinal constructs,” Spine. Vol.18, pp.1677-1688 (1993).
    [26]Claes L., Schultheiss M., Wolf S., Wilke HJ., Arand M. and Kinzl L. “A New Radiolucent System for Vertebral Body Replacement,” John Wiley & Sons. Vol.48, pp.82-89 (1999).
    [27]Faro FD., White K. and Ahn JS., “Biomechanical Analysis of Anterior Instrumentation for Lumbar Corpectomy,” Spine. Vol.28, No.22, pp.E468-E471 (2003).
    [28]Rohlmann A., Zander T. and Bergmann G., “Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants,” Eur Spine. Vol.14, pp.445-453 (2005).
    [29]Pacific Research Laboratories, Vashon, WA, SAWBONES “http://www.sawbones.com/”
    [30]許文賢,「脛骨骨髓內釘之有限元素分析」,國立台灣科技大學機械工程研究所碩士論文(2002)
    [31]Pfeiffer M., Gilbertson LG, Goel VK., Griss P., Keller JC, Ryken TC. and Hoffman HE., “Effect of specimen fixation method on pullout tests of pedicle screws,” Spine. Vol.21, No.9, pp.1037-1044(1996).
    [32]Willett K., Heam TC. and Cuncins AV, “Biomechanical testing of a new design for Schanz pedicle screws,” Journal of Orthopaedic Trauma. Vol.7, No.4, pp.375-380(1993).
    [33]Zdeblick TA., Kunz DN., Cooke ME. and McCabe R., “Pedicle screw pulIout strength. Correlation with insertional torque,” Spine. Vol.18, No.12, pp.1673-1676(1993).
    [34]Sell P., Collins M. and Dove J., “Pedicle screws: axial pull-out strength in the lumbar spine,” Spine. Vol.13, No.9, pp.1075-1076(1988).
    [35]Asnis SE., Emberg JJ., Bostrom MP, Wright TM., Harrington RM., Tencer A. and Peterson M., “Cancellous bone screw thread design and holding power,” Journal of Orthopaedic Trauma. Vol.10, No.7, pp.462-429(1996).
    [36]Brown GA., McCarthy T., Bourgeault CA. and Callahan DJ., “Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws,” Journal of Orthopaedic Research. Vol.18, No.2, pp.307-312(2000).
    [37]Kostuik JP, Valdevit A., Chang HG. and Kanzaki K., “Biomechanical testing of the lumbosacral spine,” Spine. Vol.23, No.16, pp.1721-1728(1998).
    [38]Polly DW Jr., Orchowski JR. and Ellenbogen RG, “Revision pedicle screws. Bigger, longer shims-what is best? ,” Spine. Vol.23, No.12, pp.1374-1379(1998).
    [39]Skinner R., Maybee J., Transfeldt E., Venter R. and Chalmers W., “Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study,” Spine. Vol.15, No.3, pp.195-201(1990).
    [40]Ono A., Brown MD., Latta LL., Milne EL. and Holmes DC., “Triangulated pedicle screw construct technique and pull-out strength of conical and cylindrical screws,” Journal of Spinal Disorders. Vol.14, No.4, pp.323-329(2001).
    [41]Kwok AW., Finkelstein JA., Woodside T., Heam TC. and Hu RW., “Insertional torque and pull-out strengths of conical and cylindrical pedicle screws in cadaveric bone,” Spine. Vol.21, No.21, pp.2429-2434(1996).
    [42]Krag MH., Beynnon BD., Pope MH., Frymoyer JW., Haugh LD. and Weaver DL., “An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Design and testing,” Clinical Orthopaedics & Related Research. Vol.203, pp.75-98(1986).

    QR CODE