簡易檢索 / 詳目顯示

研究生: 盧勇盛
Yung-Sheng-Lu
論文名稱: 修正式TRIZ應用於電源供應器機殼與彈片組裝創新設計改善方案研究
A study of application of modified TRIZ to innovative design of improvement project of chassis of server power supply and latch assembly
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 傅光華
Guang-Hua Fu
許覺良
Jue-Liang Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 150
中文關鍵詞: 電源供應器機殼彈片TRIZ理論有限元素分析
外文關鍵詞: server power supply, chassis, latch, TRIZ theory, finite element Analysis
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電源供應器會因彈片結構問題,衍生彈片變形而與系統接觸不良,可能會導致短路當機。本文應用修正式TRIZ方法,對電源供應器的彈片與彈片的組裝結構進行創新結構設計改善。最後進行改善彈片結構的彈片彎曲角度,先設計彎曲彈片的模具,再用Abaqus軟體模擬不同彈片彎曲角度的應力,再用逐步逼進法找出彈片受力彎曲後有最小應力的彈片彎曲角度。
    本文先應用修正式TRIZ之軟體系統篩選出建議的創研法則及其細項說明,藉以思考結構改善的概念設計方式,並經CAD軟體模擬其組裝及成行可行性,避免可能的干涉現象發生; 再經初步必要的計算及Abaqus有限元素分析軟體的輔助,驗證材料的相關性質如應力應變均在安全範圍內,結構不致破壞。
    有關機殼下蓋結構的技術部分之改良,第一階段為了組裝設計方便,我們利用修正式TRIZ分群法,進行欲改善參數為「33.使用的方便性」之判讀,判讀後得到之發明法則為「3.局部特性」的「c.將物體各零件置於最適合操作的條件下」,和不欲惡化參數為「15.移動物體之耐久性」,將此發明法則導入電源供應器結構以進行實際改善。因此本文建立3D繪圖模型,在前方面板設計成整體,使前方面板的強度增加,使用夾具固定機殼下蓋,彈片從前方組裝到機殼下蓋,使組裝方便。第二階段針對其彈片定位不足之部分,我們利用修正式TRIZ發明方法進行改良,得到改善參數為「13.物體之穩定性」,再以修正式TRIZ發明方法,判讀後得到之發明法則為「3.局部特性」的「b.具有不同零件的物體以執行不同的功能」,和不欲惡化參數為「16.不動物體之耐久性」。本文依此發明法則建立3D繪圖模型,增加定位塊固定機殼下蓋後端,然後再將彈片放入機殼下蓋內,使彈片結構組裝順利。第三階段在改良的過程中,利用修正式TRIZ發明方法進行改良,得到改善參數為「11.張力/壓力」,判讀後得到之發明法則為「11.事先緩衝」,和不欲惡化參數為「33.使用的方便性」,本文依此發明法則對機殼下蓋與彈片回彈機構的強度性做改善,並進行結構分析。在本階段中,本文先建構出一個模具成形彈片,在模具中模擬並得到彈片成形的彎曲角度,利用Abaqus模擬驗證模型之準確性,利用逐步逼進法找出受外力彎曲彈片後有最小應力的最佳彎曲角度。

    關鍵詞:電源供應器、機殼、彈片、TRIZ理論、有限元素分析


    Server power supply, due to structural problem of latch, would encounter deformation of latch and poor contact of system which may lead to short circuit and system crash. The paper applies modified TRIZ method to improve the latch of server power supply and the assembly structure of latch and improve the innovative structural design. Finally, the paper carries out improvement of the bending angle of latch, which belongs to latch structure. First of all, the paper designs a die for bending latch. Then Abaqus software is used to simulate the stresses of different bending angles of latch; and stepwise approximation method is also used to find the bending angle of latch having the least stress after latch is bended by force.
    The paper applies the software system of modified TRIZ to select the suggested invention rules and their detailed explanations. Through thinking of the conceptual design way of structural improvement and use of CAD software for simulation of its assembly and feasibility, interference can be avoided. After preliminary and necessary calculation, and with the help of the finite element analysis software, Abaqus, the paper proves that the related such as stress and strain of material, are within the safe range, and their structures would not be destroyed.
    Regarding improvement of the technical part of lower cover structure of chassis, the first stage is to achieve design of convenient assembly. We use modified TRIZ clustering method to carry out interpretation of the active improvement parameter, “33. ease of operation”. After interpretation, the acquired invention rule is “c. place each part of the object under conditions most favorable for its operation” under “3. local quality”; and the non-worsening parameter is “15. duration of action of moving object”. This invention rule is brought to the structure of server power supply to carry out actual improvement. Therefore, the paper establishes a 3D drawing model to make the front panel designed as a whole and increase the strength of the front panel. Using fixture to fix the lower cover of chassis, assembly of latch, from assembly of the front part to lower cover of chasses, is made to becomes convenient. The second stage focuses on the part of insufficient positioning of latch. We use modified TRIZ invention method to make improvement, and the achieved improvement parameter is “13. stability of the object's composition”. Then modified TRIZ invention method is used again for interpretation. The invention rule obtained after interpretation is “b. have different parts of the object carry out different function” under “3. local quality”; and the non-worsening parameter is “16. duration of action by stationary object”. Based on this invention rule, the paper establishes a 3D drawing model to increase a positioning block to fix the back end of lower cover of chassis. After that, the latch is put in the lower cover of chassis to make assembly of latch structure smooth. The third stage is that in the improvement process, modified TRIZ invention method is used to carry out improvement, and the obtained improvement parameter is “11. stress or pressure”. After interpretation, the acquired invention rule is “11. cushion in advance”; and the non-worsening parameter is “33. ease of operation”. Based on this invention rule, the paper makes improvement of the lower cover of chassis and the strength of springback mechanism of latch, and conducts analysis of structure. In this stage, the paper firstly establishes a forming latch of a die. In the die, simulation is carried out, achieving the bending angle of latch forming. Abaqus simulation is employed to prove the accuracy of the model. Stepwise approximation is used to find the best bending angle having the least stress after the latch is bended by external force.
    Keywords: server power supply, chassis, latch, TRIZ theory, finite element
    analysis

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究背景與研究動機目的 1 1.2 文獻回顧 2 1.3 論文架構 7 第二章 基本理論 9 2.1 基本必要的假設 9 2.2 有限變形之應變與應變率 9 2.3 有限變形之應力與應力率 12 2.4 有限變形之 Updated Largrangian Formulation 17 2.5 材料之彈塑性構成關係式 20 2.6 1U伺服器專用交換式電源供應器簡介 24 第三章 有限元素公式化 28 3.1 簡介 28 3.2 虛功原理之離散化 30 3.3 退化殼元素 ( degenerated shell element ) 31 3.4 不同積分法則推導退化殼元素之剛性矩陣 34 3.5 摩擦處理 35 3.6 廣義 法之增量步驟的計算 39 3.7 三維曲度修正方程式 42 3.8 除荷之設定 44 3.9 有限元素軟體簡介 45 3.9.1 有限元素軟體分析系統 45 3.9.2 Abaqus 軟體之介紹 47 3.9.3 有限元素模型之基本假設 48 第四章 材料性質與拉伸試驗 50 4.1 材料選用 50 4.2 拉伸試驗 51 4.2.1 拉伸試驗之設備 51 4.2.2 拉伸試驗之試片製作 52 4.2.3 拉伸實驗步驟 53 4.3 拉伸實驗之相關理論及公式 54 4.3.1 工程應力與工程應變 54 4.3.2 真應力與真應變 54 4.3.3 塑流方程式 55 4.4 迴歸方程式 55 4.4.1 最小平方法(Least square method)矩陣 56 4.4.2 迴歸分析模型之重要指標 58 4.5 拉伸實驗結果 60 4.5.1 實驗結果之數據 60 4.5.2 工程應力與工程應變計算 61 4.5.3 真實應力與真實應變之計算 62 4.5.4 真實應變-應力與工程應變-應力曲線之比 62 4.5.5 塑流方程式之計算 63 4.5.6 迴歸分析之計算 63 第五章 修正式 TRIZ 分群法介紹 66 5.1 TRIZ源起 66 5.2 TRIZ理論基礎 66 5.3 TRIZ解題方法 70 5.3.1 矛盾衝突矩陣法 71 5.3.2 矛盾矩陣表與創新法則 73 5.4 修正式TRIZ分群法介紹 74 5.4.1 修正式分群法TRIZ判讀流程 77 第六章 機殼下蓋與彈片結構改善分析 81 6.1 電源供應器產品需求及工程特性 81 6.2 電源供應器產品分析 82 6.3 電源供應器機殼下蓋組裝機構說明 83 6.3.1 利用修正式TRIZ在電源供應器機殼下蓋結構的技術改良 84 6.3.2 利用修正式TRIZ改善彈片與機殼下蓋結構組裝定位的改 良 91 6.3.3 利用修正式TRIZ改善彈片回彈機構的強度性 96 第七章 彈片成形模擬分析結果 101 7.1 Abaqus 模擬分析流程 101 7.1.2 分析步驟 101 7.2 彈片V形成形之沖頭負荷之比較 106 7.3 模擬結果 108 7.4 沖壓彈片引伸之不同V形成形角度之厚度分析 111 7.5 沖壓彈片不同沖頭V形成形角度之回彈角度分析 113 7.6 彈片與下蓋組合模擬結果 115 第八章 結論 130 8.1 結論 130 參考文獻 133

    [1].Goldfire Innovator, http://www.invention-machine.com/index.htm
    [2].Liu, C. C., and Chen, J. L., “Development of Product Green Innovation Design Method,” Proceedings of EcoDesign : Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, No. 7190476, pp.168-173 (2001).
    [3].Liu, C. C., and Chen, J. L., “A TRIZ Inventive Product Design Method without Contradiction Information,” The TRIZ Journal, Paper No. 6, http://www.triz-journal.com (2001).
    [4].Chang, H. T., and Chen, J. L., “An Approach Combining Extension Method with TRIZ for Innovative Product Design,” Journal of the Chinese Society of Mechanical Engineers, Vol. 25, No.1, pp.13-22 (2004).
    [5].Low, M. T., Lamvik, K. W., and Myklebust, O., “Manufacturing a green service: engaging the TRIZ model of innovation,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, Issue 1, pp.10–17 (2001).
    [6].Chang, H.T., and Chen, J. L., “The Conflict-Problem-Solving CAD Software Integrating TRIZ into Eco-Innovation,” Advances in Engineering Software, Vol. 35, Issue 8-9, pp.553-566 (2004).
    [7].Wang, H., Chen, G., Lin, Z., and Wang, H., “Algorithm of Integrating QFD and TRIZ for the Innovative Design Process,” International HYPERLINK "http://www.inderscience.com/browse/index.php?journalID=5&year=2005&vol=23&issue=1"Journal of Computer Applications in Technology, Vol. 23, Issue 1, pp.41-52 (2005).
    [8].Tong, L. H., He, C., and Shen, L., “Automatic Classification of Patent Documents for TRIZ Users,” World Patent Information, Vol. 28(1), Issue 1, pp.6-13 (2006).
    [9].Terninko, J., ”The QFD, TRIZ and Taguchi Connection : Customer– Driven Robust Innovation,” The Ninth Symposium on Quality Function Deployment, pp.374-380 (1997).
    [10].León-Rovira, N., and Aguayo, H., “A new Model of the Conceptual Design Process using QFD/FA/TRIZ,” The TRIZ Journal. http://www.triz-journal.com/, July (1998).
    [11].Apte, P. R., and Mann, D. L., “Taguchi and TRIZ: Comparisons and Opportunities,” The TRIZ Journal, http://www.triz-journal.com/, November, (2001).
    [12].Mann, D. L., “Assessing the Accuracy of the Contradiction Matrix For Recent Mechanical Inventions,” The TRIZ Journal.http://www.triz-journal.com/, February (2002).
    [13].Fey, V., and Rivin, E., “Innovation on Demand: New Product Development Using TRIZ,” Cambridge University Press, UK,(2005).
    [14].Savransky, S. D., “Engineering of Creativity –Introduction to TRIZ Methodology of Inventive Problem Solving,” CRC Press, New York, (2000).
    [15].鄭振興,「利用知識工程技術進行支撐結構設計評估與設計改善之研究」,國立台灣科技大學機械工程學系,博士論文,台北 (2011)。
    [16].黃浩誠,「應用改良之TRIZ理論結合QFD於補償式化學機械拋光終點偵測及補償路徑之改善」,國立台灣科技大學機械工程學系,碩士論文,台北(2007)。
    [17].Yamada, Y., Yoshimura, N. and Sakurai, T., "Plastic Stress Strain Matrix and Its Application for the Solution of Elastic-Plastic Strain Problems by Finite Element Method," International Journal of Science, Vol. 10, Issue 5, pp.343-354 (1968).
    [18].Hibbitt, H.D., Marcal, P. V. and Rice, J. R., "A Finite Element Formulation for Problems of Large Strain and Large Displacement," International Journal of Solids and Structures, Vol. 6, No. 8, pp.1069-1086 (1970).
    [19].McMeeking, R.M. and Rice, J. R., "Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation," International Journal of Solids and Structures, Vol. 11, Issue 5, pp.601-616 (1975).
    [20].Hayashi, Y. and Takagi, M., "Control of Side Wall Curl in Draw-bending of High Strength Steel Sheets," Proceeding of Advance Technology of Plasticity, Vol. 1, pp.735-740 (1984).
    [21].Makinouchi, A., "Finite Element Modeling of Draw-Bending Process of Sheet Metal," Proceeding of the NUMIFORM'86 Conference, Gothen- burg, Vol. 25-29, August, pp.327-332 (1986).
    [22].Makinouchi, A. and Kawka, M., "Process Simulation in Sheet Metal Forming," Journal of Materials Processing Technology, Vol. 46, No. 3-4, pp.291-307 (1994).
    [23].Galbraith, P.C. and Hallquist, J.O., "Shell-Element Formulations in LS-DYNA3D: their use in the Modeling of Sheet-Metal Forming," Journal of Materials Processing Technology, Vol. 50, Issue 1-4, pp.158-167 (1995).
    [24].Wang, J.C., Hu, P., Liu, Y.Q., "Numerical Study of the Flange Earing of Deep-Drawing Sheets with Stronger Anisotropy," International Journal of Mechanical Sciences, Vol. 43, Issue 1, pp.279-296 (2001).
    [25].Kaftanoğlu, B. and Tekkaya, A. E., "Complete Numerical Solution of the Axisymmetrical Deep-Drawing Problem," Journal of Engineering Materials and Technology, Vol. 103, Issue 4, pp.326-332 (1981).
    [26].Yossifon, S. and Tirosh, J., "The Maximum Drawing Ratio in Hydro- forming Processes," Journal of Engineering for Industry, Vol. 112, Issue 1, pp.47-55 (1990).
    [27].黃興彦,「金屬板材U-Bend成形製程之分析」,國立台灣科技大學機械工程學系,碩士論文 (2009)。
    [28].林天文,「1U伺服器專用電源供應器之散熱研究與分析」,國立台灣科技大學機械工程學系,碩士論文 (2010)。
    [29].卓震,「金屬板材引伸及再引伸成形製程之分析」,國立台灣科技大學機械工程學系,碩士論文 (2010)。
    [30]. McMeeking, R. M. and Rice, J. R., “ Finite-Element Formulation for Problems of Large Elastic-Plastic Deformation, ” Int. J. Solids Struct., Vol. 11, Issue 5, pp.601-616 (1975).
    [31].陳建宏,「金屬板材平橢圓杯引伸成形製程分析」,國立台灣科技大學機械工程學系,碩士論文 (2013)。
    [32].Kim, S. H., Kim, S. H., and Huh, H., “ Design Modification in a Multi-Stage Rectangular Cup Drawing Process with a Large Aspect Ratio by an Elasto-Plastic Finite Element Analysis, ” Journal of Materials Processing Technology, Vol.113, Issue 1-3, pp.766-773 (2001).
    [33].Wang, J.C., Hu, P. and Liu, Y.Q., “ Numerical Study of the Flange Eaeeing of Deep-Drawing Sheets with Stronger Anisotropy, ” International Journal of Mechanical Sciences, Vol.43, Issue 1, pp.279-296 (2001).
    [34].Altshuller, G., “The 40 Principles,” Technical Innovation Center, Inc. Worcester, MA, (1997).
    [35].黃志銘,「LED水族燈之結構與散熱改良研究」,國立台灣科技大學機械工程學系,碩士論文,台北(2012)。
    [36].林樹均、葉均蔚、劉增豐、李勝隆,"材料工程實驗與原理",初版, 全華(1990)
    [37].康淵、陳信吉,"ANSYS 入門",修訂四版,全華(2007)
    [38].陳聰嘉,“金屬板材V 形彎曲成形製程馬鞍現象之研究",台灣
    科技大學博士論文,台北(民國 93 年)。

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE