簡易檢索 / 詳目顯示

研究生: 蘇政于
Cheng-yu Su
論文名稱: 下顎後牙區相鄰植體贋復體型式之有限元素分析
Adjacent Implant-Supported Prostheses Type in Posterior Mandibular: a Finite element analysis
指導教授: 李維楨
Wei-chen Lee
口試委員: 洪伯達
"none"
石淦生
Kan-shan Shih
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 贗復體型式摩擦係數干涉量
外文關鍵詞: prostheses type, coefficient of friction, interference
相關次數: 點閱:193下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對相鄰植體的贗復體型式,大部分的研究理論上都主張連接植體上的贋復體,但沒有臨床上的試驗證明。因此本研究旨為探討不同的贗復體型式對於植體與皮質骨所受應力的差異,此外亦施加相同負載於臨床可能的各種咬力位置並搭配不同的摩擦係數與干涉量,觀察植體與皮質骨的應力分布,提供臨床製作贗復體型式時的參考。
      分析結果顯示:在贗復體未連接的情況下,施加咬力於近心邊緣嵴、增加摩擦係數與無干涉此三種因素能夠降低植體與皮質骨等效應力。此外,當贗復體干涉量增加,植體與皮質骨所受等效應力隨之上升,即使干涉量的增加極微渺小,所產生的側向應力卻相當巨大。而贗復體為連接的情況下,同樣施加咬力於近心邊緣嵴時,植體與皮質骨所受等效應力皆為最低。另外,兩種贗復型式透過植體與皮質骨的受力情形可以看出,贗復體為連接型式是減少植體與皮質骨等效應力的最佳方式。
      整體而言,贗復體為連接的情況下,能夠有效減少植體與皮質骨的等效應力,降低植體周圍的骨吸收或是骨疲勞斷裂的風險。


    For the adjacent implant prostheses type. Most studies have advocated the theory of splinting implant prostheses, but don’t have clinical evidence. Therefore, the purpose of this study is to investigate the stress distribution of different prostheses types in implants and cortical bone. The distribution of stress can be obtained by applying the same loading to any position in clinically indicated with various coefficient of friction and interference. Then, the values of implants and cortical bone are used as a reference to make the prostheses type in clinical

      There are three different conditions that can reduce the equivalent stress without splinting the prostheses, which are application of bite force to the mesio-marginal ridge, an increase the coefficient of friction, and no interference. In addition, when the prostheses interference is increase, the implants and cortical bone equivalent stress also increase. Even if the interference is insignificant, the resulting lateral stress is significantly. When prostheses are splinting, exerting the bite force at the mesio-marginal ridge causes all implants and cortical bone to minimum equivalent stress. Furthermore, the implants and cortical bone equivalent stress in two different prostheses type. The splinting prostheses type is the best way to reduce implants and cortical bone equivalent stress.

      In conclusion, splinting the prosthesis can effectively reduce the equivalent stress of the implant and cortical bone as well as the risk of fatigue fracture of the bone resorption around the implant.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1有限元素模型建構 1.2.2 非線性分析 1.2.3相鄰植體贋復體是否相連 1.3 研究目的 第二章 研究方法與設備 2.1 研究流程概述 2.2 有限元素法概述 2.2.1 FEA 流程概述 2.3 有限元素模型建構 2.3.1 電腦斷層影像拍攝 2.3.2 電腦斷層影像重組 2.3.3 齒冠與下顎骨模型修整 2.3.4 植體與支台模型建構 2.4 有限元素模型分析 2.4.1 各組件組合 2.4.2 網格形式規劃 2.4.3 材料參數設定 2.4.4邊界條件設定與咬力位置 2.5 簡化研究模型 2.5.1 簡化後各組件模型 第三章 分析結果與比較 3.1 不同咬力位置對於連接與不連接之應力比較 3.1.1 第二小臼齒遠心邊緣嵴 (disto-marginal ridge) 3.1.2 第二小臼齒頰側咬頭 (cusp tip) 3.1.3 第二小臼齒近心邊緣嵴 (mesio-marginal ridge) 3.1.4 咬力位置綜合比較 3.2 不同干涉量對於連接與不連接之應力比較 3.2.1 植體於不同干涉量所受之應力 3.2.2 皮質骨於不同干涉量所受之應力 3.3 不同摩擦係數對於連接與不連接之應力比較 3.3.1 植體於不同摩擦係數所受之應力 3.3.2 皮質骨於不同摩擦係數所受之應力 3.4 反作用力對於連接與不連接之應力比較 3.4.1 反作用力對於植體與皮質骨的影響 3.4.2 摩擦係數對於反作用力的影響 3.4.3 干涉量對於反作用力的影響 3.4.4 簡化模型與未簡化模型比較 第四章 討論 4.1 有限元素模型外形 4.2 贗復體連接與不連接的影響 4.3 摩擦係數的影響 4.4 干涉量的影響 4.5 咬力位置不同的影響 第五章 結論與未來研究方向 5.1 結論 5.2 未來研究方向 文獻回顧

    1. Wang TM, Leu LJ, Wang JS, Lin LD: Effects of Prosthesis Materials and Prosthesis Splinting on Peri-implant Bone Stress Around Implants in Poor-Quality Bone: A Numeric Analysis. International Journal of Oral and Maxillofacial Implants 2002, 17(2):231-237.
    2. Geramy A, Adibrad M, Sahabi M: The effects of splinting periodontally compromised removable partial denture abutments on bone stresses: A three-dimensional finite element study. Journal of Dental Sciences 2010, 5(1):1-7.
    3. 缺牙救星 人工植牙與人工假牙區別 [http://health.chinatimes.com/contents.aspx?cid=1,10&id=6042]
    4. Rieger MR, Fareed K, Adams WK, Tanquist RA: Bone stress distribution for three endosseous implants. The Journal of Prosthetic Dentistry 1989, 61(2):223-228.
    5. Rieger MR, Mayberry M, Brose MO: Finite element analysis of six endosseous implants. The Journal of Prosthetic Dentistry 1990, 63(6):671-676.
    6. Meijer HJA, Starmans FJM, Bosman F, Steen WHA: A comparison of three finite element models of an edentulous mandible provided with implants. Journal of Oral Rehabilitation 1993, 20(2):147-157.
    7. Barbier L, Sloten JV, Krzesinski G, Van Der Perre ES, G: Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. Journal of Oral Rehabilitation 1998, 25(11):847-858.
    8. Hansson S: The implant neck: smooth or provided with retention elements. A biomechanical approach. Clinical Oral Implants Research 1999, 10(5):394-405.
    9. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H: Influence of implant design and bone quality on stress/strain distribution in bone around implants: A 3-dimensional finite element analysis. International Journal of Oral and Maxillofacial Implants 2003, 18(3):357-368.
    10. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O: Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clinical Oral Implants Research 2004, 15(4):401-412.
    11. Huang H-L, Hsu J-T, Fuh L-J, Tu M-G, Ko C-C, Shen Y-W: Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-linear finite element study. Journal of Dentistry 2008, 36(6):409-417.
    12. Akca K, Iplikcioglu H: Finite Element Stress Analysis of the Influence of Staggered Versus Straight Placement of Dental Implants. International Journal of Oral and Maxillofacial Implants 2001, 16(5):722-730.
    13. Iplikcioglu H, Akca K: Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. Journal of Dentistry 2002, 30(1):41-46.
    14. Lin CL, Lee HE, Wang CH, Chang KH: Integration of CT, CAD system and finite element method to investigate interfacial stresses of resin-bonded prosthesis. Computer Methods and Programs in Biomedicine 2003, 72(1):55-64.
    15. Clement R, Schneider J, Brambs HJ, Wunderlich A, Geiger M, Sander FG: Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament. Computer Methods and Programs in Biomedicine 2004, 73(2):135-144.
    16. Natali AN, Pavan PG, Ruggero AL: Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis. Dental Materials 2006, 22(4):388-395.
    17. Wakabayashi N, Ona M, Suzuki T, Igarashi Y: Nonlinear finite element analyses: Advances and challenges in dental applications. Journal of Dentistry 2008, 36(7):463-471.
    18. Mahmoud AAA, Wakabayashi N, Takahashi H: Prediction of permanent deformation in cast clasps for denture prostheses using a validated nonlinear finite element model. Dental Materials 2007, 23(3):317-324.
    19. Mahmoud A: Pre-overloading to extend fatigue life of cast clasps. Journal of Dental Research 2007, 86(9):868-872.
    20. Cattaneo PM, Dalstra M, Melsen B: The finite element method: A tool to study orthodontic tooth movement. Journal of Dental Research 2005, 84(5):428-433.
    21. Muraki H, Wakabayashi N, Park I, Ohyama T: Finite element contact stress analysis of the RPD abutment tooth and periodontal ligament. Journal of Dentistry 2004, 32(8):659-665.
    22. The glossary of prosthodontic terms. The Journal of prosthetic dentistry 1999, 81:39.
    23. Serio FG: Clinical rationale for tooth stabilization and splinting. Dental clinics of North America 1999, 43(1):1-6, v.
    24. Guichet DL, Yoshinobu D, Caputo AA: Effect of splinting and interproximal contact tightness on load transfer by implant restorations. Journal of Prosthetic Dentistry 2002, 87(5):528-535.
    25. Naert I, Koutsikakis G, Duyck J, Quirynen M, Jacobs R, Van Steenberghe D: Biologic outcome of implant-supported restorations in the treatment of partial edentulism Part 1: A longitudinal clinical evaluation. Clinical Oral Implants Research 2002, 13(4):381-389.
    26. Naert I, Koutsikakis G, Quirynen M, Duyck J, Van Steenberghe D, Jacobs R: Biologic outcome of implant-supported restorations in the treatment of partial edentulism Part 2: A longitudinal radiographic evaluation. Clinical Oral Implants Research 2002, 13(4):390-395.
    27. 黃宗田: Biomechanical effects of post dimension and alveolar bone level on endodontically treated premolar. 2007.
    28. 錢正原., 陳益貞., 李亞芸., 楊淑芬.: 數位及進階影像在牙髓病學之應用. journal of dental sciences 2010, 30(1):1-9.
    29. Shibuya Y, Kobayashi M, Takeuchi J, Asai T, Murata M, Umeda M, Komori T: Analysis of 472 Branemark system TiUnite implants:a retrospective study. The Kobe journal of medical sciences 2009, 55(3):E73-81.
    30. KEI T, YOSHIRO M, KOSUKE O, KEN'ICHI M, TETSUYA Y, S K, YUJI S, HAJIME M: Comparison of Survival Rates of Machined Screw Type Implant and Hydroxyapatite (HA)-Coated Cylindrical Implant for Non-Complicated Patients. Nippon Koku Inpuranto Gakkaishi 2003, 16(1):70-76.
    31. Lekholm U, Gunne J, Henry P, Higuchi K, Linden U, Bergstrom C, Van Steenberghe D: Survival of the Branemark Implant in Partially Edentulous Jaws: A 10-Year Prospective Multicenter Study. International Journal of Oral and Maxillofacial Implants 1999, 14(5):639-645.
    32. Huang HL, Huang JS, Ko CC, Hsu JT, Chang CH, Chen MYC: Effects of splinted prosthesis supported a wide implant or two implants: A three-dimensional finite element analysis. Clinical Oral Implants Research 2005, 16(4):466-472.
    33. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O: Influence of Prosthesis Material on Stress Distribution in Bone and Implant: A 3-Dimensional Finite Element Analysis. International Journal of Oral and Maxillofacial Implants 1998, 13(6):781-790.
    34. Caglar A, Aydin C, Ozen J, Yilmaz C, Korkmaz T: Effects of mesiodistal inclination of implants on stress distribution in implant-supported fixed prostheses. International Journal of Oral and Maxillofacial Implants 2006, 21(1):36-44.
    35. Brunski JB: Biomechanics of oral implants: future research directions. Journal of dental education 1988, 52(12):775-787.
    36. Van Eijden TMGJ: Three-dimensional analyses of human bite-force magnitude and moment. Archives of Oral Biology 1991, 36(7):535-539.
    37. Mericske-Stern R, Assal P, Mericske E, Burgin W: Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. the International journal of oral & maxillofacial implants 1995, 10(3):345-353.
    38. Koran A, Craig RG, Tillitson EW: Coefficient of friction of prosthetic tooth materials. The Journal of Prosthetic Dentistry 1972, 27(3):269-274.
    39. Isidor F: Loss of osseointegration caused by occlusal load of oral implants: A clinical and radiographic study in monkeys. Clinical Oral Implants Research 1996, 7(4):143-152.
    40. Isidor F: Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clinical Oral Implants Research 1997, 8(1):1-9.
    41. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH: Bone microdamage and skeletal fragility in osteoporotic and stress fractures. Journal of Bone and Mineral Research 1997, 12(1):6-15.

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE