簡易檢索 / 詳目顯示

研究生: 鍾智勇
Chih-Yung Chung
論文名稱: 在階層式時間-空間多輸入多輸出無線通訊上之低複雜度調適性分群偵測
Low Complexity Adaptive Group Detection in Layered Space-Time MIMO Wireless Communications
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
Kuen-Tsair Lay
洪賢昇
none
張順雄
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
中文關鍵詞: 大量地減少複雜度與偵測延遲調適性群序式連續干擾消除法調適性門限垂直-階層式時間-空間空間多工
外文關鍵詞: adaptive threshold, substantially reduced complexity and latency, adaptive group order successive interference can, spatial multiplexing, V-BLAST
相關次數: 點閱:270下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空間多工為多輸入多輸出系統之一個主要的信號處理技術。空間多工技術能提供線性的容量增加而不需消耗額外的功率或頻寬。階層式時間-空間架構使用多天線陣列於傳送端與接收端,為空間多工之最顯著的利用。

    於本論文中,我們討論用於階層式時間-空間(亦稱為垂直-階層式時間-空間)架構的偵測技術,對於單一及多使用者多輸入多輸出無線通訊系統。為了達到一個更好的折衷於運算複雜度與性能,我們提出一個簡易然而有效的分群偵測,其含有調適性群序式連續干擾消除法。新的方式由高到低,依功率強度來一群群連續地去除已偵測訊號。而值得注意的是,每群使用者的數目是調適地決定於後置訊號雜訊比的平均值,依此來得到較好的順序於信號處理。更明確而言,根據此取決於每階的門限,每一階段剩餘的信號被分成兩群:欲偵測群與剩餘群。在欲偵測群中為訊號雜訊比值的大於等於門限的使用者,在階層式時間空間信號處理之後,其將被去除。所有的過程將重複直到所有的使用者皆已被偵訊。新的方法能降低多重存取干擾於多使用者-多輸入多輸出系統,且調適性的消除多重位元流干擾於單使用著干擾於多使用者-多輸入多輸出系統與多使用者-多輸入多輸出系統。

    從實驗結果顯示所提出的方法相較於以前的方法,在兩種方案下能達成接近,且有時甚至更好的位元錯誤率效能,但大量地減少複雜度與偵測延遲。


    Spatial multiplexing (SM) is one of the major signaling techniques
    in multiple-input multiple-output (MIMO) systems. The SM schemes
    can provide a linear increase in the capacity without additional
    power or bandwidth consumption. The layered space-time (LAST)
    architectures use the multi-element antenna arrays (MEAs) at both
    transmitter and receiver is the most notable exploitation of SM
    schemes.

    In this thesis, we discuss the detection techniques of the LAST
    (also known as the vertical Bell Laboratories layered space-time
    (V-BLAST) scheme) for both single user (SU) and multiuser (MU)
    MIMO wireless communication systems. To strike a better tradeoff
    between computational complexity and performance, a simple, yet
    effective group detection with adaptive group order successive
    interference cancellation (AGOSIC) is addressed. The new approach
    sequentially peels off the detected signals group by group in a
    descending order of power levels, and, most noticeable, the number
    of users in each group are adaptively determined based on the
    average of the post signal to noise ratio (SNR) to achieve a
    better ordering of signals. More specifically, according to the
    threshold, which is stage dependent, the remaining signals in each
    stage are partitioned into two groups: the desired group and the
    residual group. After conducting the layered space-time processing
    scheme, the signals in the desired group, whose SNRs are all
    greater than or equal to the threshold, are then removed. The
    whole process is repeated until all users are detected.
    The new scheme can suppress the effect of multiple access
    interference (MAI) in the MU-MIMO, and adaptively mitigate the
    effect of multiple access interferences (MSI) in both SU-MIMO and
    MU-MIMO.

    Furnished simulations show that proposed scheme in both scenarios
    can yield close and sometime even better than, bit error rate
    (BER) performance as that of the previous works, but with
    substantially reduced complexity and latency.

    Contents 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 WIRELESS COMMUMICATIONS SIGNAL MODELS IN MIMO SYSTEMS 7 2.1 Bell Laboratories Layered Space-Time Architecture . . . . . . . . . 7 2.2 Signal Models in SU-MIMO Systems . . . . . . . . . . . . . . . . . 8 2.2.1 SU-MIMO Signal Model . . . . . . . . . . . . . . . . . . . . 8 2.2.2 SU-MIMO Channel Capacity . . . . . . . . . . . . . . . . . 11 2.3 Signal Models in MU-MIMO Systems . . . . . . . . . . . . . . . . . 16 2.3.1 Multiuser MIMO System . . . . . . . . . . . . . . . . . . . . 16 2.3.2 MU-MIMO DS-CDMA Baseband Signal Model . . . . . . . 17 3 LAYERED SPACE-TIME DETECTION TECHNIQUES 20 3.1 Overview of SU-MIMO Receivers . . . . . . . . . . . . . . . . . . . 20 3.1.1 Optimum Receiver for MIMO . . . . . . . . . . . . . . . . . 21 3.1.2 Suboptimum Linear Receivers for MIMO systems . . . . . . 21 3.1.3 Suboptimum Nonlinear Receivers for MIMO systems . . . . 23 3.2 Overview of MU-MIMO Receivers . . . . . . . . . . . . . . . . . . . 27 3.2.1 Layered Space-Time Multiuser Detection . . . . . . . . . . . 27 3.2.2 Layered Space-Time Group Multiuser Detection . . . . . . . 30 4 LOW COMPLEXITY ADAPTIVE GROUP DETECTION 34 4.1 V-BLAST Detection with AGOSIC Scheme . . . . . . . . . . . . . 34 4.2 LAST-MUD with AGOSIC Scheme . . . . . . . . . . . . . . . . . . 38 4.3 Performance Analysis and Computational Complexity . . . . . . . . 42 4.3.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 42 4.3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . 44 4.4 Experimental Results and Discussions . . . . . . . . . . . . . . . . . 45 5 CONCLUSIONS 57 REFERENCE 59

    [1] A. J. Paulraj and B. P. Papadias, “Space-time processing for wireless communications,”IEEE Signal Processing Magazine, vol. 45, pp. 49-83, Nov. 1997.
    [2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.
    [3] H. B¨olcskel, A. J. Paulraj, K. V. S. Hari, R. U. Nabar, and W. W. Lu, “Fixed broadband wireless access: state of the art, challenges, and future directions,”IEEE Communications Magazine, vol. 39, pp. 100-108, Jan. 2001.
    [4] T. S. Rappaport, Wireless Communications Princiles and Practice. 2th ed, Prentice Hall PTR, 2002.
    [5] H. B¨olcskel, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Transactions on Communications, vol.50, no. 2, pp. 225-234, Feb. 2002.
    [6] S. Alamouti, “A simple transmit diversity technique for wireless communications,”IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [7] V. Tarokh, H. Jafarkhani, and A.R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory vol. 45, no. 5, pp. 1456-1467, July. 1999.
    [8] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications, Cambridge University Press, 2003.
    [9] G. J. Foschini and M. J. Gans, “Layered space-time architecture for wireless communication in a fading environment when using multiple antennas,” Bell Labs Technical Jurnal, vol. 1, no. 2, pp. 41-59, 1996.
    [10] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,“V-BLAST: an architecture for realizing very high data rates over the richscattering wireless channel,” in Proc. ISSSE’98, pp. 295V300, 1998.
    [11] D. Samardzija, P. W. Wolniansky, and J. Ling, “Performance evaluation of the VBLAST algorithm in W-CDMA systems,” in Proc. IEEE. VTC, pp.723-727, Oct. 2001.
    [12] J. G. Proakis, Digital Communications, 4th ed, McGraw-Hill, 2001.
    [13] S. Moshavi, “Multi-user detection for DS-CDMA communications,” IEEE Communications Magazine, vol. 34, pp. 124-136, Oct. 1996.
    [14] S. Verdu, Multiuser Detection, Cambridge University Press, 1998.
    [15] K. C. Lai and J. J. Shynk, “Performance evaluation of a generalized linear SIC for DS/CDMA signals,” IEEE Trans. Signal Processing, vol. 51, no. 6, pp. 1604-1614, June 2003.
    [16] V. K. Garg and A. Seshadri,“Performance improvement in wireless system due to parallel interference cancellation (PIC) algorithm,” in Proc. IEEE International Conf. on Persnal Wireless Commun., pp. 243-249, 2002.
    [17] Y. Li, G. Liao, and F. Wang, “A new application of DS-CDMA in BLAST systems” Proc. ICCCAS, vol. 1, pp. 145-148, 2004.
    [18] J.-A. Tsai and B. D. Woerner, “Performance of orthogonal transmit waveforms for CDMA uplink systems in MIMO Rayleigh channels,” in Proc. WCNC, vol. 1, pp. 206-209, 2002.
    [19] H. Huang, H. Viswanathan, and G. J. Foschini, “Multiple antennas in cellular CDMA systems: transmission, detection, and spectral efficiency,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp. 383-392, July. 2002.
    [20] S. Xi, M. Song, Y. Zhao, L. Ren, and J. Song, “Co-channel interference cancellation for MIMO CDMA wireless communications,” Proc. IEEE PIMRC, pp. 1405-1409, 2003.
    [21] R.L. Choi, M. T. Ivrlac, R. D. Murch, and W. Utschick, “On strategies of multiuser MIMO transmit signal processing,” IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 1936-1941, Nov. 2004.
    [22] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 461-471, Feb. 2004.
    [23] R. Wonjong ,Y. W. Yu ,and J. M. Cioffi, “The optimality of beamforming in uplink multiuser wireless systems,” IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 86-96, Jan. 2004.
    [24] S. Sfar, R. D. Murch, and K. Ben Letaief, “Achieving high capacities in CDMA systems using multiuser detection based on BLAST,” in Proc. IEEE International Conf. on Commun., pp. 565-569, 2001.
    [25] S. Sfar, R. D. Murch, and K. Ben Letaief, “Layered space-time multiuser detection over wireless uplink systems,” IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 653-668, July 2003.
    [26] J. Luo, K. Pattipati and P. Willett, “Optimal grouping and user ordering for sequential group detection in synchronous CDMA,” Proc. IEEE GLOBECOM, vol. 2, pp. 738-742, Nov. 2001.
    [27] J. Luo, K. Pattipati and P. Willett, “Optimal grouping algorithm for a group decision feedback detector in synchronous CDMA communications,” IEEE Transactions on Communications, vol. 51, pp. 341-346, March 2003.
    [28] H.-Y. Lu, W.-H. Fang and W.-S. Yang, “Decision aided MMSE-SIC multiuser detection for DS-CDMA systems,” in Proc. of the IEEE 6th Circuits and Systems: Emerging Technologies in Wireless Communications, pp. 795-798, 2004.
    [29] A. J. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge University Press, 2003.
    [30] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD: The Johns Hopkins Univ. Press, 1983.
    [31] S. J. Leon, Linear Algebra with Applications. 5th ed, N.J.: Prentice Hall, 1998.
    [32] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,”IEEE Trans. Commun., vol. 46, no. 3 , pp. 357-366, Mar. 1998.
    [33] C. Chuah, D. Tse, J. Kahn, and R. Valenzuela, “Capacity scaling in MIMO wireless systems under correlated fading,” IEEE Trans. Inform. Theory, vol.48, pp. 637-650, March 2002.
    [34] T. Nishimura, T. Ohgane, Y. Ogawa, Y. Doi, and J. Kitakado, “Downlink beamforming performance for an SDMA terminal with joint detection,” in Proc. IEEE VTC, vol. 3, pp. 1538-1542, 2001.
    [35] H.-M. Chen, Q.-Y. Xu, and Z.-X. Wang, “Transmit and receive weights optimization algorithm in MIMO-SDMA system,” in Proc. IEEE PIMRC, vol. 3, pp.2868-2781, 2003.
    [36] T. M. Cover, “Comments on broadcast channels,” IEEE Trans. Inform. Theory, vol. 44, pp. 2524-2530, Oct. 1998.
    [37] S. Sfar, and K. Ben Letaief, “Group ordered successive interference cancellation for multiuser detection in MIMO CDMA systems,” in Proc. IEEE Wireless Communications and Networking Conf., pp. 888-893, 2003.
    [38] I. Bahceci, T. M. Duman, and Y. Altunbasak, “Antenna selection for multipleantenna transmission systems: performance analysis and code construction,”IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2669-2681, Oct. 2003.
    [39] D. Lin, S. Sfar, and K. B. Letaief, “Receive antenna selection for MIMO systems in correlated channels,” in Proc. IEEE International Conf. on Commun., vol. 5, pp. 2944-2948, June. 2004.

    QR CODE