簡易檢索 / 詳目顯示

研究生: 徐千耘
Chian-Yun Hsu
論文名稱: 積層製造椎弓根骨螺絲彎曲強度之有限元素分析與生物力學測試
Finite Element Analysis and Biomechanical Test for Bending Strength of Additive Manufactured Pedicle Screws
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 釋高上
Kao-Shang Shih
趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 椎弓根骨螺絲積層製造有限元素分析生物力學測試
外文關鍵詞: pedicle screw, additive manufacturing, finite element analysis, biomechanical test
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 椎弓根骨螺絲在現今的醫療中已經廣泛的使用於治療脊椎的退化性疾病以及脊椎椎骨的骨折,然而椎弓根骨螺絲植入脊椎後容易因為脊椎反覆的運動與彎曲造成椎弓根骨螺絲的破斷,為了避免椎弓根骨螺絲植入脊椎後發生破斷的情況,研究椎弓根骨螺絲的彎曲強度是至關重要的。過去針對椎弓根骨螺絲彎曲強度的研究其骨螺絲大部分是以傳統的切削加工製成的,本研究的椎弓根骨螺絲則是以積層製造的方式製成的。積層製造近年來廣泛的應用在生醫材料以及其他各個領域。積層製造相較於傳統加工具有成型快速、減少材料浪費,以及可以製作幾何形狀複雜的製品等等優勢,以積層製造製作骨科植入物可針對病人的骨骼型態製作出客製化的植入物。本研究的積層製造椎弓根骨螺絲若具有好的彎曲強度將提供骨科醫師與脊椎疾病患者一項嶄新的選擇。本研究使用有限元素分析以及生物力學機械測試進行積層製造椎弓根骨螺絲彎曲強度的研究,針對椎弓根骨螺絲螺紋幾何參數的不同進行彎曲強度的探討。
    本研究有限元素分析的部分首先針對椎弓根骨螺絲螺紋不同近端根部弧角半徑與遠端根部弧角半徑的大小進行彎曲強度的探討,再來則是針對椎弓根骨螺絲螺紋不同內徑大小與螺紋不同錐度起始位置進行彎曲強度的探討。有限元素分析的結果發現具有越大的根部弧角半徑、越大的螺紋內徑,以及螺紋具有錐度的部分越多,椎弓根骨螺絲的彎曲強度越大。
    本研究接著進行積層製造椎弓根骨螺絲彎曲強度的生物力學測試,針對椎弓根骨螺絲螺紋不同內徑大小與螺紋不同錐度起始位置進行降伏強度以及疲勞強度的測試與分析。降伏測試與疲勞測試的結果與有限元素分析的結果呈現相同的趨勢,即越大的骨螺絲螺紋內徑,以及骨螺絲螺紋具有錐度的部分越多,降伏強度與疲勞強度皆越大。然而與過去以切削加工製作的椎弓根骨螺絲之彎曲強度測試結果進行比較,本研究以積層製造製作的椎弓根骨螺絲其疲勞強度明顯低於切削加工製作的椎弓根骨螺絲,故針對積層製造椎弓根骨螺絲進行熱處理,並再次進行疲勞強度的測試,探討熱處理是否對骨螺絲的疲勞壽命有幫助。結果發現熱處理後相較於熱處理前增加了約69%的疲勞壽命,但是仍無法達到與切削加工的骨螺絲一樣的疲勞壽命,因此積層製造椎弓根骨螺絲仍具有較大的破斷風險,其臨床適用性仍不如切削加工的椎弓根骨螺絲。


    Pedicle screws are currently widely used in medical treatment for spinal degenerative diseases and vertebrae fractures. However, implanted pedicle screws can easily rupture due to repeated movement and bending of the spine. The bending strength of a pedicle screw is therefore crucial and should be studied to avoid rupture of the pedicle screw after implantation into the spine. Most pedicle screws in relevant studies focusing on the bending strength have been made through conventional machining, but the pedicle screw used in this study was made using additive manufacturing. Additive manufacturing has been widely applied in biomedical materials and other fields in recent years. Compared with conventional machining, additive manufacturing has advantages including rapid molding, reduced material waste, and the ability to produce products with complex geometric shapes. The orthopedic implants made through additive manufacturing can produce customized implants according to each patient’s bone status. The additive manufactured pedicle screw proposed in this study, which has excellent bending strength, may provide a new option for orthopedic physicians and patients with spinal diseases. In this study, a finite element analysis and biomechanical testing were used to study the bending strength of the additive manufactured pedicle screw. The bending strength of the pedicle screw with respect to the geometric parameters of the screw thread was also investigated.
    In the finite element analysis, the bending strength of the pedicle screw with varying proximal and distal root radiuses was first investigated. Subsequently, the bending strength of the pedicle screw with varying thread inner diameters and taper start positions was also discussed. The results revealed that the bending strength of the pedicle screw was greater when the root radius and thread inner diameter were larger and had more tapers.
    In addition, this study performed a biomechanical test of the bending strength of the pedicle screw. Tests and analyses of the yield strength and fatigue strength of the pedicle screw with varying inner diameters and taper start positions were performed. The results of the yield and fatigue tests revealed a similar trend to the results of the finite element analysis, namely that a large inner diameter of the pedicle screw and number of tapers on the pedicle screw thread correspond to a high yield strength and fatigue strength. However, results indicated that compared with the bending strength of a pedicle screw made through conventional machining, the proposed pedicle screw made through additive manufacturing exhibited a lower fatigue strength. Therefore, heat treatment was performed on the additive manufactured pedicle screw before the fatigue strength was tested again to investigate whether heat treatment was helpful for improving the fatigue life of the pedicle screw. The result revealed that the fatigue life of the screw was increased by approximately 69% after the heat treatment, but the fatigue life was still shorter than that of the conventional machined pedicle screw. Accordingly, the additive manufactured pedicle screw possessed a relatively high risk of rupture. Therefore, its clinical applicability is not as satisfactory as that of the pedicle screw made through conventional machining.

    中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 人體脊椎介紹 3 1.3 脊椎常見之病症 8 1.3.1 椎體受損 9 1.3.2 椎間盤退化 10 1.3.2.1 椎間盤突出 11 1.3.2.2 椎管狹窄 12 1.3.2.3 椎間滑脫 12 1.4 椎弓根骨螺絲簡介 13 1.5 積層製造 14 1.6 文獻回顧 15 1.7 本文架構 21 第二章 積層製造椎弓根骨螺絲彎曲強度有限元素分析 22 2.1 有限元素分析簡介 23 2.2 骨螺絲不同近端與遠端根部弧角半徑有限元素分析 26 2.2.1 彎曲強度模型建立與設定 26 2.2.2 結果 31 2.3 骨螺絲不同內徑與圓錐錐度起始位置有限元素分析 35 2.3.1 彎曲強度模型建立與設定 35 2.3.2 結果 41 第三章 積層製造椎弓根骨螺絲彎曲強度機械測試 48 3.1 積層製造椎弓根骨螺絲降伏強度機械測試 48 3.1.1 降伏強度機械測試實驗程序 48 3.1.2 降伏強度機械測試結果 52 3.2 積層製造椎弓根骨螺絲疲勞強度機械測試 59 3.2.1 疲勞強度機械測試實驗程序 59 3.2.2 疲勞強度機械測試結果 60 3.2.3 Design I熱處理後疲勞強度機械測試 68 第四章 討論 73 第五章 結論與未來展望 79 5.1 結論 79 5.2 未來展望 80 參考文獻 81 附錄一 動物骨螺絲有無添加生物玻璃降伏強度機械測試 85

    [1] Boucher, H. H. (1959). A method of spinal fusion. The Journal of bone and joint surgery. British volume, 41(2), 248-259.
    [2] Griza, S., de Andrade, C. E. C., Batista, W. W., Tentardini, E. K., & Strohaecker, T. R. (2012). Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects. Engineering Failure Analysis, 25, 133-143.
    [3] Pfeiffer, M., Hoffman, H., Goel, V. K., Weinstein, J. N., & Griss, P. (1997). In vitro testing of a new transpedicular stabilization technique. European Spine Journal, 6(4), 249-255.
    [4] Kim, K., Park, W. M., Kim, Y. H., & Lee, S. (2010). Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(3), 477-485.
    [5] Rohlmann, A., Bergmann, G., Graichen, F., & Mayer, H. M. (1998). Placing a bone graft more posteriorly may reduce the risk of pedicle screw breakage: analysis of an unexpected case of pedicle screw breakage. Journal of biomechanics, 31(8), 763-767.
    [6] Chen, C. S., Chen, W. J., Cheng, C. K., Jao, S. H. E., Chueh, S. C., & Wang, C. C. (2005). Failure analysis of broken pedicle screws on spinal instrumentation. Medical engineering & physics, 27(6), 487-496.
    [7] Amaritsakul, Y., Chao, C. K., & Lin, J. (2014). Comparison study of the pullout strength of conventional spinal pedicle screws and a novel design in full and backed-out insertions using mechanical tests. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228(3), 250-257.
    [8] Stambough, J. L., El, F. K., Genaidy, A. M., & Huston, R. L. (1999). Strength and fatigue resistance of thoracolumbar spine implants: an experimental study of selected clinical devices. Journal of spinal disorders, 12(5), 410-414.
    [9] Pihlajamäki, H., Myllynen, P., & Böstman, O. (1997). Complications of transpedicular lumbosacral fixation for non-traumatic disorders. The Journal of bone and joint surgery. British volume, 79(2), 183-189.
    [10] Vanichkachorn, J. S., Vaccaro, A. R., Cohen, M. J., & Cotler, J. M. (1997). Potential large vessel injury during thoracolumbar pedicle screw removal: a case report. Spine, 22(1), 110-113.
    [11] Chao, C. K., Hsu, C. C., Wang, J. L., & Lin, J. (2008). Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses. Clinical Spine Surgery, 21(2), 130-138.
    [12] Shih, K. S., Hsu, C. C., Hou, S. M., Yu, S. C., & Liaw, C. K. (2015). Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests. Medical engineering & physics, 37(9), 879-884.
    [13] 徐慶琪, "骨螺絲之結構設計與生物力學分析, " 國立臺灣科技大學機械工程研究所博士論文, 2005。
    [14] 游祥明、宋晏仁、古宏海、傅毓秀、林光華. (2004). 解剖學. 臺北市: 華杏出版股份有限公司
    [15] 台灣脊椎中心, http://taiwanspinecenter.com.tw/
    [16] 周姝妤,椎弓根骨螺絲固定系統於治療腰椎椎間盤退化之生物力學研究,國立台灣科技大學機械工程研究所碩士論文
    [17] Prescher, A. (1998). Anatomy and pathology of the aging spine. European Journal of Radiology, 27(3), 181-195.
    [18] Ebraheim, N. A., Hassan, A., Lee, M., & Xu, R. (2004, September). Functional anatomy of the lumbar spine. In Seminars in pain medicine (Vol. 2, No. 3, pp. 131-137). WB Saunders.
    [19] Mahadevan, V. (2018). Anatomy of the vertebral column. Surgery (Oxford).
    [20] Anne Asher, Anatomy of the Ligaments in the Spine, https://www.verywellhealth.com/spinal-ligament-anatomy-296462
    [21] Intervertebral disc, https://en.wikipedia.org/wiki/Intervertebral_disc
    [22] iSpineCare, http://ispinecare.com/spine_disease/VCF/VCF.html
    [23] 謝政達, 脊椎壓迫性骨折不可忽視的骨質疏鬆併發症, https://www.cgh.org.tw/tw/content/magazine/health/NEW/207/207-2-2.pdf
    [24] Failed trial of vertebroplasty for compression fractures, https://www.painscience.com/biblio/failed-trial-of-vertebroplasty-for-compression-fractures.html
    [25] Urban, J. P., & Roberts, S. (2003). Degeneration of the intervertebral disc. Arthritis Res Ther, 5(3), 120.
    [26] Degenerative Disc Disease, https://www.cancercarewny.com/content.aspx?chunkiid=222181
    [27] OrthoInfo,https://orthoinfo.aaos.org/en/diseases--conditions/herniated-disk-in-the-lower-back/
    [28] Practicing Yoga With A Herniated Disc?, https://www.yoganatomy.com/practicing-yoga-with-a-herniated-disc/
    [29] 骨科線上, https://sites.google.com/view/bonenews/home?authuser=0
    [30] Cervical Spinal Stenosis: Care Instructions, https://myhealth.alberta.ca/Health/aftercareinformation/pages/conditions.aspx?hwid=uf8546
    [31] 腰椎滑脫手術病患護理指導, https://wd.vghtpe.gov.tw/orth/files/educat/%E8%85%B0%E9%83%A8%E8%84%8A%E6%A4%8E%E6%BB%91%E8%84%AB%E6%89%8B%E8%A1%93%E7%97%85%E6%82%A3%E8%AD%B7%E7%90%86%E6%8C%87%E5%B0%8E.pdf
    [32] When Your Child Has Spondylolysis or Spondylolisthesis, https://fairview.org/sitecore/content/Fairview/Home/Patient-Education/Articles/English/w/h/e/n/_/When_Your_Child_Has_Spondylolysis_or_Spondylolisthesis_89341
    [33] 工業材料雜誌11月號推出「3D列印材料」及「石化高值化材料」技術專題 https://www.materialsnet.com.tw/DocView.aspx?id=18245
    [34] 積層製造成形技術與應用, https://www.materialsnet.com.tw/DocView.aspx?id=24544
    [35] 3D列印醫材技術之發展趨勢與客製化流程, http://www.pida.org.tw/optolink/optolink_pdf/1050912509.pdf
    [36] Fogel, G. R., Reitman, C. A., Liu, W., & Esses, S. I. (2003). Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure. Spine, 28(5), 470-473.
    [37] Chen, P. Q., Lin, S. J., Wu, S. S., & So, H. (2003). Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design. Spine, 28(9), 881-886.
    [38] Griza, S., de Andrade, C. E. C., Batista, W. W., Tentardini, E. K., & Strohaecker, T. R. (2012). Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects. Engineering Failure Analysis, 25, 133-143.
    [39] Amaritsakul, Y., Chao, C. K., & Lin, J. (2014). Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests. Medical engineering & physics, 36(9), 1218-1223.
    [40] Kubiak, A. J., Lindqvist-Jones, K., Dearn, K. D., & Shepherd, D. E. (2019). Comparison of the mechanical properties of two designs of polyaxial pedicle screw. Engineering Failure Analysis, 95, 96-106.
    [41] 康淵, 陳信吉, "ANSYS入門(修訂二版)", 全華科技圖書股份有限公司, (2005)
    [42] 李輝煌, "ANSYS工程分析基礎與觀念", 高立圖書有限公司, (2008)
    [43] Brown, G. A., McCarthy, T., Bourgeault, C. A., & Callahan, D. J. (2000). Mechanical performance of standard and cannulated 4.0‐mm cancellous bone screws. Journal of Orthopaedic Research, 18(2), 307-312.
    [44] Pienkowski, D., Stephens, G. C., Doers, T. M., & Hamilton, D. M. (1998). Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine, 23(7), 782-788.
    [45] Cho, W., Cho, S. K., & Wu, C. (2010). The biomechanics of pedicle screw-based instrumentation. The Journal of bone and joint surgery. British volume, 92(8), 1061-1065.
    [46] Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141.
    [47] Thöne, M., Leuders, S., Riemer, A., Tröster, T., & Richard, H. A. (2012, August). Influence of heat-treatment on Selective Laser Melting products–eg Ti6Al4V. In Solid freeform fabrication symposium SFF, Austin Texas.

    無法下載圖示 全文公開日期 2024/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE