簡易檢索 / 詳目顯示

研究生: 潘茂森
Mao-Sen Pan
論文名稱: 網格演化有限元素分析於大地工程之應用
Application of the Evolving Mesh Method for Finite Element Analyses in Geomechanics
指導教授: 謝佑明
Yo-Ming Hsieh
口試委員: 歐章煜
Chang-Yu Ou
張大鵬
Ta-Peng Chang
陳鴻銘
Hung-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 173
中文關鍵詞: 有限元素分析網格調整內插變動最小平方法
外文關鍵詞: finite element analysis, remeshing, interpolation, moving least square
相關次數: 點閱:172下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在開發高效率的大地工程的有限元素分析步驟,而提出的新分析步驟,在此稱為「網格演化有限元素分析法」。傳統上,以有限元素進行大地工程上開挖之模擬時乃以單一網格考慮各開挖階段幾何形狀之邊界,而網格的產生需要通過所有的幾何邊界,因此造成網格產生十分困難而必須使用相當微小的分割,也因此產生大量的自由度量並需要龐大的計算能力才能求解。此新方法提出網格建置的新思維,以網格演化的方式模擬開挖時之幾何形狀連續變動,進而降低自由度量並減少不必要的計算資源浪費。應用於三維度有限元素分析上,更能減少因龐大自由度量所需的時間。本研究以C++程式語言自行撰寫新方法之解映射程式,並與ABAQUS有限元素分析軟體配合以實現此分析步驟,最後並以大地工程開挖為例,比較了此方法與用傳統分析方法分析之結果,以驗證了此方法之正確性並評估網格演化法之效能與效益。根據所選定之案例,本研究預估出一三維度隧道分析所需的時間約為傳統方法的25%。本研究並開發一後處理程式以追蹤各階段特定節點應力及位移變化之結果。


    A new analysis technique “evolving mesh method” is developed for high-performance finite element analyses in geomechanics. Conventional finite element analyses for excavations or tunnels use a single mesh to consider multi-stage excavations, and require multiple geometric boundaries to be considered during meshing. These geometric boundaries can become a huge constraint during mesh generation for complex excavation sequeunces, and may result in great number of unknowns that need to be solved simultaneously. The evolving mesh method, on the other hand, considers each excavation stage separately, and creates meshes for each excavation step. As a result, mesh generation can be greatly simplified, and a significant reduction of degrees of freedom and solution time can be achieved for 3D analyses or excavations with complex sequences.
    The evolving mesh method consists of two phases: mesh-to-mesh solution mapping and finite element calculation. The solution mapping is programmed by the author using object oriented language C++, and finite element solution is done with commercial finite element code: ABAQUS. A post-processing program is also made in order to obtain total displacements and stresses for specific nodes between different meshes.
    The proposed evolving mesh method is validated by comparing its calculation results with conventional finite element calculations, and its performance is evaluated by case studies. It is found the evolving mesh method yields satisfactory computation accuracy. For the selected three-dimensional tunneling simulation, it is predicted that the evolving mesh method can reduce the computation time by 75% compared with the conventional finite element analyses.

    論文摘要 I Abstract III 致 謝 V 目 錄 VII 圖 目 錄 XI 表 目 錄 XV 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究方法 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 有限元素法與網格調整 5 2.2 內插方式之研究 7 2.3 小結 8 第三章 網格演化法 11 3.1 傳統大地工程有限元素分析 11 3.2 網格演化法 12 3.3 傳統分析方法與網格演化方法之差異性 16 3.4 內插方法理論 21 3.4.1 反轉距離內插理論 22 3.4.2 曲線近似內插理論 22 3.4.2.1 多項式函數近似法 22 3.4.2.2 最小二乘法 24 3.4.3 變動式最小平方近似內插理論法 26 3.4.3.1 變動式最小平方近似法理論 26 3.4.3.2 權重函數的形式 28 3.4.3.3 背景網格之點位搜尋法 28 3.5 ABAQUS有限元素分析軟體 30 第四章 系統分析與實行 35 4.1 系統整體架構 35 4.2 程式架構 36 4.2.1 解映射程式 37 4.2.2 後處理程式 41 4.2.3 數學函式庫 45 4.3 ABAQUS之相關整合 48 4.3.1 ABAQUS與內插程式之整合 48 4.3.2 ABAQUS之網格對網格解映射 51 4.3.3 分析模型輪廓之擷取 52 4.3.4 變位及應力資料二進位檔之輸出 53 第五章 網格演化方法之系統驗證 55 5.1 IDA、LS、MLS內插方法驗證及誤差探討 55 5.1.1 二維空間內插之驗證 56 5.1.1.1 均勻點位驗證 56 5.1.1.2 隨機點位驗證 67 5.1.2 三維空間內插之驗證 74 5.1.2.1 均勻點位驗證 75 5.1.2.2 隨機點位驗證 81 5.1.3 IDA、LS、MLS內插方法之誤差探討 86 5.1.4 IDA、LS、MLS內插方法之計算效能 87 5.2 網格演化有限元素分析之系統驗證 89 5.2.1 驗證模型 90 5.2.2 MLS與ABAQUS實行解映射之結果 92 5.2.3 網格演化法與傳統方法比較之驗證結果 94 5.3 小結 110 第六章 案例分析與效能探討 113 6.1 二向度大地工程之深開挖模擬分析與效能探討 113 6.1.1 案例說明 113 6.1.2 分析結果位移之相對差異 118 6.1.3 效能探討 122 6.2 三維度隧道開挖模擬分析之效能預估 123 6.2.1 案例說明 123 6.2.2 效能探討 125 第七章 結論與建議 127 7.1 結論 127 7.2 建議 129 參考文獻 131 附錄A 內插方法 135 A.1 ALI內插法 135 A.2 UEM內插法 135 A.3 Lagrange差值法 136 A.4 牛頓(Newton)差值法 136 A.5 葉特肯(Aitken)差值法 140 A.6 楔(Spline)曲線近似法 143 A.7 指數函數近似法 147 附錄B 程式類別成員 149 附錄C C呼叫C++程式之方法 167 附錄D LINUX上動態聯結函式庫之製作方式 171

    “ABAQUS實務入門引導”,愛發股份有限公司編著,全華科技圖書股份有限公司印行(2005)
    陳金印(2005),”平行與物件導向化之無元素法分析”,國立台灣科技大學營建工系所碩士論文
    葉進賢(2004),”均質與非均質土層潛盾隧道開挖沉陷之有限元素分析”,國立中央大學土木工程學系碩士學位論文
    朱峻平(2003),”元素釋放法計算加速之研究”,私立中原大學土木工程學系碩士學位論文
    李政達(2002),”元素釋放法於彈性動力之研究”,私立中原大學土木工程學系碩士學位論文
    林聰悟、林佳慧(1997),”數值方法與程式”。
    “ABAQUS Analysis User’s Manual Version 6.5”, ABAQUS, Inc.
    “LAPACK Users' Guide Third Edition”, http://www.netlib.org/lapack/lug/index.html
    Amir R. Khoei and Roland W. Lewis. (1999). “Adaptive finite element remeshing in a large deformation analysis of metal powder forming”, International Journal For Numerical Methods In Engineering, 45:801-820.
    Burd, H. J., Houlsby, G. T., Augarde, C. E., and Liu, G. (2000). "Modelling tunnelling-induced settlement of masonry buildings." Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 143(1), 17-29.
    Dasari, G. R., Rawlings, C. G., and Bolton, M. D. (1996). "Numerical Modelling of a NATM Tunnel Construction in London Clay." Geotechnical Aspects of Underground Construction in Soft Ground, Mair and Taylor, eds., 491-496.
    De Borst, R., Sluys, L. J., Muhlhaus, H. B. and Pamin, J. (1993). “Fundamental issues in finite element analyses of localization of deformation”, Engineering Computations, Vol. 10, 99-121.
    Eberhardt, E. (2001). "Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face." International Journal of Rock Mechanics and Mining Sciences, 38(4), 499-518.
    El-Hamalawi, A. and Bolton, M.D. (1999). “An a posteriori error estimator for plane-strain geotechnical Analyses”, Finite Elements in Analysis and Design, 33:335-354
    El-Hamalawi, A. and Bolton, M.D. (2002). “A-posteriori error estimation in axisymmetric geotechnical analyses”, Computers and Geotechnics, 29:587–607
    Erhart, Tobias, Wall, Wolfgang A. and Ramm, Ekkehard. (2006). “Robust adaptive remeshing strategy for large deformation transient impact simulations”, International Journal For Numerical Methods In Engineering, 65:2139-2166.
    Georgiadis, M., and Anagnostopoulos, C. (1998). "Effect of berms on sheet-pile wall behaviour." Geotechnique, 48(4), 569-574.
    Gerald/Wheatley (1997),應用數值分析3rd,譯述者:王文盛、郭俊良
    Ghosh, S. and Kikuchi, N. (1991). “An arbitrary Lagrangian-Eulerian fnite element method for large deformation analysis of elastic-viscoplastic solid”, Comput. Meth. Appl. Mech. Engng., 86, 127-188 .
    Hsieh, Y.-M. (2004). "Parallel Computation in Efficient Non-Linear Finite Element Analysis with Applications to Soft-Ground Tunneling Project," Massachusetts Institute of Technology, Cambridge.
    Hu, Y. and Randolph, M. F. (1998). “A practical numerical approach for large deformation problems in soil”, International Journal For Numerical And Analytical Methods In Geomechanics, 22:237-350
    Jun, Sukky, Cho, Young-Sam, and Im, Seyoung. (2003). “Moving least-square method for the band-structure calculation of 2D photonic crystals”, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
    Krysl, Petr and Belytschko, Ted. (2001). “ESFLIB: A library to compute the element free Galerkin shape functions”, Computer Methods Applied Mechanics Engineering 190 (2001) 2181-2205.
    Kwak, Dae-Young, Cheon, Jae-Seung and Im, Yong-Taek. (2002). “Remeshing for metal forming simulations - Part I: Two-dimensional quadrilateral remeshing”, International Journal For Numerical Methods In Engineering, 53:2463-2500.
    Lee, F.-H., Yong, K.-Y., Quan, K. C. N., and Chee, K.-T. (1998). "Effect of corners in strutted excavations: Field monitoring and case histories." Journal of Geotechnical & Geoenvironmental Engineering, 124(4), 339-349.
    Lekien, F. and Marsden, J. (2005). "Tricubic interpolation in three dimensions." International Journal For Numerical Methods In Engineering, 63:455-471.
    Li, Hua, Wang, Q.X. and Lam, K.Y. (2004). “Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis”, Computer Methods Applied Mechanics Engineering 193 (2004) 2599–2619.
    Lin, H. and Atluri, S.N. (2001). “The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations”, CMES, vol.2, no.2, pp.117-142.
    Lippmann, H. (1979). Maetal forming plasticity, Springer-Verlag, Berlin.
    Liu, G. (1997). "Numerical Modelling of Damage to Masonry Buildings Due to Tunnelling," Doctor of Philosophy, University of Oxford.
    Maron, Melvin J., Lopez, Robert J.. (1991). “Numerical Analysis: A Practical Approach 3rd”, Wadsworth Publishing Company, ISBN: 0-534-12372-4.
    Nayroles, B., G . Touzot and P. Villon. (1992). “Generalizing the Finite Element Method:Diffuse Approximation and Diffuse Elements”, Computational Mechanics, Vol.10, pp.307~318.
    Nazem, Majidreza, Sheng, Daichao, and Carter, John P. (2006). “Stress intergration and mesh refinement for larger deformation in geomechanics”, International Journal For Numerical Method In Engineering, 65:1002-1027
    Oh, C., Shiau, B., and Wang, I. (2000). "Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history." Canadian Geotechnical Journal, 37(2), 438-448.
    Raju, I. S., Phillips, D. R. and Krishnamurthy, T. (2004). “A Meshless Method Using Radial Basis Functions for Beam Bending Problems”, NASA/TP-2004-212996.
    Shin, J. H., Potts, D. M., and Zdravkovic, L. (2002). "Three-dimensional modelling of NATM tunnelling in decomposed granite soil." Geotechnique, 52(3), 187-200.
    Taylor, L. M. (1981). “A finite element analysis for large deformation metal forming problems involving Contact and Friction”, Ph.D. Thesis, U. of Texas at Austin.
    Truesdell, C. (1997). “A First Course In Rational Mechanics”, Vol. 1: General Concepts, Academic Press, New York.
    Whittle, A. J., Hashash, Y. M. A., and Whitman, R. V. (1993). "Analysis of deep excavation in Boston." Journal of Geotechnical Engineering, 119(1), 69-90.
    Wiberg, Nils-Erik, Abdulwahab, Fethi and Ziukas, Saulius. (1994). “Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions”, International Journal For Numerical Methods In Engineering, 37:3417-3440.
    Yoo, C., and Shin, H.-K. (2003). "Deformation behaviour of tunnel face reinforced with longitudinal pipes--laboratory and numerical investigation." Tunnelling and Underground Space Technology, 18(4), 303-319.
    Zienkiewicz, O. C. and Huang, Maosong. (1995). “Localization problems in plasticity using finite elements with adaptive remeshing”, International Journal For Numerical And Analytical Methods In Geomechanics, 19:127-148

    QR CODE