簡易檢索 / 詳目顯示

研究生: 梁德賢
Te-Hsien Liang
論文名稱: 動靜脈廔管支架設計及以旋轉式3D列印進行製作
Arteriovenous fistula stent design and fabrication with rotary 3D printing
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 林清安
陳士勛
林建宏
鄧秉敦
葉家宏
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 141
中文關鍵詞: 動靜脈廔管支架旋轉式3D列印
外文關鍵詞: Arteriovenous fistula, Stent, Rotary 3D printing
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XIV 第一章、 緒論 15 1.1. 研究背景 15 1.2. 研究動機與目的 16 第二章、 文獻回顧 19 2.1. 生物可吸收支架發展 19 2.2. 血液透析及動靜脈廔管手術 22 2.3. 動靜脈廔管支架 26 2.4. 生物可吸收支架製程 29 2.4.1. 多元化的支架製程技術 29 2.4.2. 旋轉式3D列印製程 31 第三章、 實驗方法 35 3.1. 動靜脈廔管支架設計概念 37 3.2. 動靜脈廔管支架設計與模擬 38 3.2.1. 漸進式結構支架設計 38 3.2.2. 漸進式結構支架模擬 44 3.3. 旋轉式3D列印設備改造及製程 51 3.3.1. 旋轉式3D列印設備改造 51 3.3.2. 旋轉式3D列印製程 52 3.3.2.1. 漸進式結構支架列印製程參數 54 3.3.2.2. 列印路徑測試 56 3.4. 實驗驗證 57 3.4.1. 支架覆膜製程 58 3.4.2. 支架下壓力實驗 60 3.4.3. 支架徑向壓縮實驗 60 3.4.4. 人工靜脈製程及支架置入自擴張及氣球擴張實驗 61 第四章、 實驗結果與討論 64 4.1. 支架設計模擬與靜脈擴張模擬 64 4.1.1. 支架設計 64 4.1.2. 支架向下壓縮及徑向壓縮模擬 66 4.1.3. 支架置入靜脈自擴張及氣球擴張模擬 69 4.2. 3D列印設備改造及製程實驗 79 4.2.1. 3D列印設備改造 79 4.2.2. 3D列印路徑實驗 83 4.2.3. 支架結構幾何列印實驗 84 4.3. 實驗驗證 88 4.3.1. 支架覆膜製程實驗 88 4.3.2. 支架結構向下壓縮量測實驗 89 4.3.3. 支架徑向壓縮實驗 101 4.3.4. 人工靜脈製程及置入支架後自擴張與氣球擴張實驗 106 4.3.4.1. 人工靜脈製程實驗 106 4.3.4.2. 漸進式結構支架置入人工靜脈自擴張實驗 108 4.3.4.3. 漸進式結構支架置入人工靜脈氣球擴張實驗 116 第五章、 結論與未來展望 125 5.1. 結論 125 5.2. 未來展望 126 參考文獻 128

    1. 衛生福利部中央健康保險署,2020年全民健康保險醫療費用前二十大疾病。摘自 https://www.nhi.gov.tw/DL.aspx?sitessn=292&u=LzAwMS9VcGxvYWQvMjkyL3JlbGZpbGUvMC8xNDY5NDMvMjAyMOW5tOWci%2bS6uuWFqOawkeWBpeW6t%2bS%2fnemaquWwsemGq%2beWvueXheizh%2bioii0xMTAwODA1LnBkZg%3d%3d&n=MjAyMOW5tOWci%2bS6uuWFqOawkeWBpeW6t%2bS%2fnemaquWwsemGq%2beWvueXheizh%2bioii0xMTAwODA1LnBkZg%3d%3d&ico%20=.pdf Accessed December 25, 2021.
    2. 衛生福利部,110年全民健康保險醫療給付費用 總額協商參考指標要覽。摘自 https://www.mohw.gov.tw/dl-72320-5da2775d-2c64-418d-b293-1f1ee56dea6c.html Accessed December 25, 2021.
    3. 台灣腎臟醫學會,2020年台灣腎病年報。摘自 https://www.tsn.org.tw/UI/L/TWRD/ebook_2020年報.pdf Accessed December 25, 2021.
    4. 郭依婷、李佳駿、宋俊明.透析治療-觀念演變及進展.內科學誌 2019, 30,86-95。
    5. 顏志軒.血液透析動靜脈廔管檢查新趨勢之介入性廔管整型術.臺灣腎臟護理學會雜誌 2006,5,2。
    6. Besarab, A.; Work, J. Vascular access work group membership, Am J Kidney Dis 2006, 48(1), S177-S247.
    7. Siddiqui, M.A.; Ashraff, S.; Carline, T. Maturation of arteriovenous fistula: Analysis of key factors. Clin Kidney J 2017, 36(4), 318-328.
    8. Sala Almonacil V; Plaza Martínez; Zaragozá García J; Martínez Parreño C; Al-Raies Bolaños B; Gómez Palonés F; Ortíz Monzón E.; Comparison between autogenous brachial-basilic upper arm transposition fistulas and prosthetic brachial-axillary vascular accesses for hemodialysis. J Cardiovasc Surg (Torino) 2011, 52(5), 725-30.
    9. Quencer, K.B.; Melih, Arici. Arteriovenous fistulas and their characteristic sites of stenosis. AJR Am J Roentgenol 2015, 205(4), 726-734.
    10. Kubiak, R.W.; Zelnick, L.R.; Hoofnagle, A.N., et al. Mineral metabolism disturbances and arteriovenous fistula maturation. Eur J Vasc Endovasc Surg 2019, 57(5), 719-728.
    11. Manne, V.; Pogula, V.; Nalubolu, M.; Gouru, V.; Byram, R.; Bodduluri, S. Can pre and postoperative vein diameter and postoperative flow velocities influence the patency of vascular access in hemodialysis patients?. Indian J Vasc Endovasc Surg 2018, 5(3), 145-148.
    12. Dageforde, L.A.; Harms, K.A.; Feurer, I.D.; Shaffer, D. Increased minimum vein diameter on preoperative mapping with duplex ultrasound is associated with arteriovenous fistula maturation and secondary patency. J Vasc Surg 2015, 61(1), 170-176.
    13. Browne, L.D.; Bashar, K.; Griffin, P.; Kavanagh, E.G.; Walsh, S.R.; Walsh, M.T. The role of shear stress in arteriovenous fistula maturation and failure: a systematic review. PLoS One 2015, 10(12), e0145795.
    14. Bashar, K.; Clarke-Moloney, M.; Burke, P.E.; Kavanagh, E.G.; Walsh, S.R. The role of venous diameter in predicting arteriovenous fistula maturation: when not to expect an AVF to mature according to pre-operative vein diameter measurements? A best evidence topic. Int J Surg 2015, 15, 95-99.
    15. Galyfos, G.; Geropapas, G.; Stefanidis, I.; Kerasidis, S.; Stamatatos, I.; Kastrisios, G.; Giannakakis, S.; Papacharalampous, G.; Maltezos, C. Bioabsorbable stenting in peripheral artery disease. Cardiovasc Revasc Med 2015, 16(8), 480-483.
    16. Hou, L.D.; Li, Z.; Pan, Y., et al. A review on biodegradable materials for cardiovascular stent application. Front Mater Sci 2016, 10, 238-259.
    17. Bax, B.; Müssig, J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 2008, 68(7-8), 1601-1607.
    18. Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol Biosci 2004, 4, 835-864.
    19. Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly (lactic acid). Prog Polym Sci 2008, 33, 820-852.
    20. Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 2010, 101, 8493-8501.
    21. Guerra, A.J.; San, J.; Ciurana, J. Fabrication of PCL/PLA composite tube for stent manufacturing. Procedia CIRP 2017, 65, 231-235.
    22. Guerra, A.; Ciurana, J.D. Fiber laser cutting of polymer tubes for stents manufacturing. Proc Manuf 2017, 13, 190-196.
    23. Stepak, B.; Antonczak, A.J.; Bartkowiak-Jowsa, M.; Filipiak, J.; Pezowicz, C.; Abramski, K.M. Fabrication of a polymer-based biodeg-radable stent using a CO2 laser. Arch Civ Mech Eng 2014, 14, 317-326.
    24. Su, A.P.; Sang, J.L.; Kyung, S.L.; In, H.B.; Jun, H.L.; Wan, D.K.; Myung, H. J.; Jun-Kyu, P. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Mater Lett 2015, 141, 355-358.
    25. Guerra, A.; Roca, A.; Ciurana, J.d. A novel 3D additive manufacturing machine to biodegradable stents. Procedia Manuf 2017, 13, 718-723.
    26. Gruntzig, A. Transluminal dilatation of coronary-artery stenosis. Lancet 1978, 1, 263.
    27. Mueller, R.L.; Sanborn, T.A. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. Am Heart J 1995, 129(1), 146-72.
    28. Omar, W.A.; Kumbhani, D.J. The current literature on bioabsorbable stents: a review. Curr Atheroscler Rep 2019, 21, 54.
    29. Schiele T.M.; Krötz F.; Klauss V. Vascular restenosis - striving for therapy. Expert Opin Pharmacother 2004, 5(11), 2221-32.
    30. Iqbal, J.; Gunn, J.; Serruys, P.W. Coronary stents: Historical development, current status and future directions. Br Med Bull 2013, 106, 193-211.
    31. Ang, H.Y.; Bulluck, H.; Wong, P., et al. Bioresorbable stents: Current and upcoming bioresorbable technologies. Int J Cardiol 2017, 2288, 931-939.
    32. David, C. Art bucking the trend in bioabsorbable stents. In Vivo: The Business & Medicine Report 2008, 26(6), 1-9.
    33. Bonan, R.; Asgar, A. Biodegradable stents—Where are we in 2009?. Int Cardio 2009, 6(1), 81-84.
    34. McMahon, S.; Bertollo, N.; O'Cearbhaill, E.D.; Salber, J., et al. Bio-resorbable polymer stents: a review of material progress and prospects. Prog. Polym Sci 2018, 83, 79-96.
    35. Zhu, Y.; Yang, K.; Cheng, R.; Xiang, Y.; Yuan, T.; Cheng, Y.; Sarmento, B.; Cui, W. The current status of biodegradable stent to treat benign luminal disease. Mater Today 2017, 20(9), 516-529.
    36. Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335-2346.
    37. Nathan, A.; Kohn, J.; Shalaby, S.W. Amino acid derived polymers. In editor. Biomedical polymers Designed to degrade systems. New York: Hanser 1994, 117-51.
    38. Sousa, J.E.; Serruys, P.W.; Costa, M. A New Frontiers in Cardiology: Drug-Eluting Stents: Part I. Circulation 2003, 107, 2274-2279.
    39. Hermiller, J.B.; Raizner, A.; Cannon, L. et al., Outcomes with the polymer-based paclitaxel-eluting TAXUS stent in patients with diabetes mellitus: the TAXUS-IV trial. J Am Coll Cardiol 2005, 45(8), 1172-1179.
    40. Serruys, P.W. et al., A Bioabsorbable everolimus-eluting coronary stent system (ABSORB) - 2-year outcomes and results from multiple imaging methods. Lancet 2009, 373, 897-910.
    41. Malvin, E.R. How a dentist's name became a synonym for a life-saving device: The story of Dr. charles stent. J Hist Dent 2001, 49, 2.
    42. Dotter, C.T.; Judkins, M.P. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation 1964, 30, 654-670.
    43. Galyfos, G.; Geropapas, G.; Stefanidis, I.; Kerasidis, S.; Stamatatos, I.; Kastrisios, G.; Giannakakis, S.; Papacharalampous, G.; Maltezos, C. Bioabsorbable stenting in peripheral artery disease. Cardiovasc Revasc Med 2015, 16, 480-483.
    44. 楊翼寧、陳銳溢、王憲奕、鄭高珍.糖尿病腎病變的診斷與治療.內科學誌 2018,29,240-249。
    45. Saran, R.; Robinson, B.; Abbott, K.C., et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2019, 73(3, Supplement 1), A7-8.
    46. McLennan, G. Stent and stent-graft use in arteriovenous dialysis access. Seminars in interventional radiology 2016, 33(1), 10-14.
    47. Lee, T.; Thamer, M.; Zhang, Q.; Zhang, Y.;Allon, M. Vascular access type and clinical outcomes among elderly patients on hemodialysis. Clin J Am Soc Nephrol 2017, 12(11), 1823-1830.
    48. HD, Available at: https://www.niddk.nih.gov/health-information/kidney-disease/kidney-failure/hemodialysis Accessed December 25, 2021.
    49. AVG, Available at: https://www.azuravascularcare.com/infodialysisaccess/arteriovenous-graft-facts/ Accessed December 25, 2021.
    50. CVC, Available at: https://www.azuravascularcare.com/infodialysisaccess/understanding-central-venous-catheter/ Accessed December 25, 2021.
    51. AVF, Available at: https://www.azuravascularcare.com/medical-services/dialysis-access-management/av-fistula-creation/ Accessed December 25, 2021.
    52. Patel, S.T.; Hughes, J.; Mills, J.L. Sr. Failure of arteriovenous fistula maturation: an unintended consequence of exceeding dialysis outcome quality Initiative guidelines for hemodialysis access. J Vasc Surg 2003, 38(3), 439-45.
    53. Swinnen, J.; Tan, K.L.; Allen, R.; Burgess, D.; Mohan, I.V. Juxta-anastomotic stenting with aggressive angioplasty will salvage the native radiocephalic fistula for dialysis. J Vasc Surg 2015, 61, 436-442.
    54. DeVita, M.V.; Khine, S.K.; Shivarov, H. Novel approaches to arteriovenous access creation, maturation, suitability, and durability for dialysis. Kidney Int Rep 2020, 5, 769-778.
    55. Liu, S.J.; Chiang, F.J.; Hsiao, C.Y.; Kau, Y.C.; Liu, K.S. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques. Ann Biomed Eng 2010, 38, 3185-3194.
    56. Gittard, S.D.; Narayan, R.J. Laser direct writing of micro-and nano-scale medical devices. Expert Review of Medical Devices 2010, 7, 343-356.
    57. Nuutinen, J.P.; Clerc, C.; Reinikainen, R.; Tormala, P. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J Biomater Sci Polym Ed 2003, 14, 255-266.
    58. Kim, J.H.; Kang, T.J.; Yu, W.R. Mechanical modeling of self-expandable stent fabricated using braiding technology. J Biomech 2008, 41, 3202-3212.
    59. Cabrera, M.S.; Sanders, B.; Goor, O.; Driessen-Mol, A.; Oomens, C.W.J.; Baaijens, F.P.T. Computationally designed 3D printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: a proof-of-concept study. 3D Print Addit Manuf 2017, 4, 19-29.
    60. Gomes, M.E.; Ribeiro, A.; Malafaya, P.; Reis, R.; Cunha, A. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 2001, 22, 883-889.
    61. Hung, C.H.; Chang, F.Y.; Chang, T.L.; Chang, Y.T.; Huang, K.W.; Liang, P.C. Micromachining NiTi tubes for use in medical devices by using a femtosecond laser. Opt Lasers Eng 2015, 66, 34-40.
    62. Hung, C.H.; Chang, F.Y. Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser. Opt Laser Technol 2017, 90, 1-6.
    63. Wang, C.E.; Zhang, P.H. In vitro degradation behaviours of PDO monofilament and its intravascular stents with braided structure. Autex Res J 2016, 16, 80-89.
    64. Makoyeva, A.; Bing, F.; Darsaut, T.E.; Salazkin, I.; Raymond, J. The varying porosity of braided self-expanding stents and flow diverters: an experimental study. AJNR Am J Neuroradiol 2013, 34, 596-602.
    65. Park, S.A.; Lee, S.J.; Lim, K.S.; Bae, I.H.; Lee, J.H.; Kim, W.D.; Jeong, M.H.; Park, J.K. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Mater Lett 2015, 141, 355-358.
    66. Liu, Y.Y.; Yu, H.C.; Liu, Y.; Liang, G.; Zhang, T.; Hu, Q.X. Dual drug spatiotemporal release from functional gradient scaffolds prepared using 3D bioprinting and electrospinning. Polym Eng Sci 2016, 56, 170-177.
    67. Ware, H.O.T.; Farsheed, A.C.; Van Lith, R.; Baker, E.; Ameer, G.; Sun, C. Process development for high-resolution 3D-printing of bioresorbable vascular stents. SPIE 2017, 10115, 101150N.
    68. Flege, C.; Vogt, F.; Hoges, S.; Jauer, L.; Borinski, M.; Schulte, V.A.; Hoffmann, R.; Poprawe, R.; Meiners, W.; Jobmann, M., et al. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting. J Mater Sci Mater Med 2013, 24, 241-255.
    69. Capel, A.J.; Edmondson, S.; Christie, S.D.; Goodridge, R.D.; Bibb, R.J.; Thurstans, M. Design and additive manufacture for flow chemistry. Lab Chip 2013, 13, 4583-4590.
    70. Wu, Z.; Zhao, J.; Wu, W.; Wang, P.; Wang, B.; Li, .;, Zhang, S. Radial compressive property and the proof-of-concept study for realizing self-expansion of 3D printing polylactic acid vascular stents with negative poisson's ratio structure. Materials (Basel) 2018, 11(8), 1357.
    71. Kim, T.H.; Lee, J.H.; Ahn, C.B.; Hong, J.H.; Son, K.H.; Lee, J.W. Development of a 3D-printed drug-eluting stent for treating obstructive salivary gland disease. ACS Biomater Sci Eng 2019, 5(7), 3572-3581.
    72. Ha, D.; J. Y. Kim, J.Y.; Park, T.S.; Park, J.H.; Chae, S.; Kim, B.S.; Lee, H.C.; Cho, D. Development of a radiopaque, long-term drug eluting bioresorbable stent for the femoral-iliac artery. RSC Adv 2019, 9, 34636-34641.
    73. Guerra, A.J.; Ciurana, J. 3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features. Mater Des 2018, 137, 430-437.
    74. Zhao, D.; Zhou, R.; Sun, J.; Li, H.; Jin, Y. Experimental study of polymeric stent fabrication using homemade 3D printing system. Polym Eng Sci 2019, 59, 1122-1131.
    75. Jia, H.; Gu, S.Y.; Chang, K. 3D printed self-expandable vascular stents from biodegradable shape memory polymer. Adv Polym Technol 2018, 37(8), 3222-3228.
    76. Guerra, A.J.; Ciurana, J. Stent’s Manufacturing field: Past, present, and future prospects. 2019, 10.5772/intechopen.81668.
    77. Hu, T.; Yang, C.; Lin, S.; Yu, Q.; Wang, G. Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives. Mater Sci Eng C 2018, 91, 163-178.
    78. Niels, G.; Carsten, M.B.; Christine, S.A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann Biomed Eng 2007, 35(12), 2031-2038.
    79. Im, S.H.; Jung, Y.; Kim, S.H. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta biomater 2017, 60, 3-22.
    80. Hyto ̈nen, J.P.; Taavitsainen, J.; Tarvainen, S.; and Yla ̈Herttuala, S. Biodegradable coronary scaffolds: their future and clinical and technological challenges. Cardiovasc Res 2018, 114(8), 1063-1072.
    81. Welch, T.R.; Nugent, A.W.; Veeram Reddy, S.R. Biodegradable stents for congenital heart disease. Interv Cardiol Clin 2019, 8(1), 81-94.
    82. Lindholm, D.; James, S. Bioresorbable stents in PCI. Curr Cardiol Rep 2016, 18(8), 1-6.
    83. Kocˇka, V.; Touˇsek, P.; Widimsky ́, P. Absorbbioresorbable stents for the treatment of coronary artery disease. Expert Rev Med Devices 2015, 12(5), 545-557.
    84. Alexy, R.D.; Levi, D.S. Materials and manufacturing technologies available for production of a pediatric bio-absorbable stent. BioMed Res Int 2013, 2013(137985), 11.
    85. Ho, M.Y.; Chen, C.C.; Wang, C.Y.; Chang, S.H.; Hsieh, M.J.; Lee, C.H.; Wu, V.C.C.; Hsieh, I.C. The development of coronary artery stents: From bare-metal to bio-resorbable types. Metals 2016, 6, 168.
    86. Chen, C.; Xiong, Y.; Li, Z.; Chen, Y. Flexibility of biodegradable polymer stents with different strut geometries. Materials 2020, 13, 3332.
    87. Yang, J.; Huang, N. Mechanical formula for the plastic limit pressure of stent during expansion. Acta Mech Sin 2009, 25, 795.
    88. Wei, Y.; Wang, M.; Zhao, D.; Li, H.; Jin, Y. Structural design of mechanical property for biodegradable polymeric stent. Adv Mater Sci Eng 2019, 2019(2960435), 14.
    89. Grasso, M.; Azzouz, L.; Ruiz-Hincapie, P.; Zarrelli, M.; Ren, G. Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens. Rapid Prototyp J 2018, 24, 1337-1346.
    90. Leach, J.R.; Mofrad, M.R.K.; Saloner, D. Computational models of vascular mechanics. In: Computational modeling in biomechanics, edited by De S., Guilak F., Mofrad R. K. M. Springer, Dordrecht, 2010.
    91. Ogden, R.W.; Saccomandi, G. Introducing mesoscopic information into constitutive equations for arterial walls. Biomech Model Mechanobiol 2007, 6, 333-344.
    92. Holzapfel, G.A.; Gasser, T.C. Computational stress-deformation analysis of arterial walls including high-pressure response. Int J Cardiol 2007, 116(1), 78-85.
    93. Gasser, T.C.; Ogden, R.W.; Holzapfel, G.A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 2006, 3, 15-35.
    94. Bischoff, J.E.; Arruda, E.A.; Grosh, K. A microstructurally based orthotropic hyperelastic constitutive law . ASME J Appl Mech 2002, 69(5), 570-579.
    95. Westerhof, N.; Noordergraaf, A. Arterial viscoelasticity: A generalized model: Effect on input impedance and wave travel in the systematic tree. J Biomech 1970, 3(3), 357-379.
    96. 簡惠龍,「生醫材料機械性質測定之研究」,博士,機械與機電工程學系,國立中山大學,2012。
    97. Holzapfel, G.A. Nonlinear solid mechanics, John Wiley & Sons, West Sussex, England, 2000.
    98. Mooney, M. A theory of large elastic deformation. J Appl Phys 1940, 11(9), 582-592.
    99. Rivlin, R.S. Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos Trans Royal Soc 1948, 241(835), 379-397.
    100. Mooney-Rivlin hyperelastic model for nonlinear finite element analysis, Available at: https://getwelsim.medium.com/mooney-rivlin-hyperelastic-model-for-nonlinear-finite-element-analysis-b0a9a0459e98 Accessed December 25, 2021.
    101. McGah, P.M.; Leotta, D.F.; Beach, K.W. et al. Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula. Biomech Model Mechanobiol 2014, 13, 679-695.
    102. Prendergast, P.J.; Lally, C.; Daly, S.; Reid, A.J.; Lee, T.C.; Quinn, D.; Dolan, F. Analysis of prolapse in cardiovascular stents: A constitutive equation for vascular tissue and finite-element modelling. ASME J Biomech Eng 2003, 125(5), 692-699.
    103. Schiavone, A.; Zhao, L.G. A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment. Mech Adv Mater Mod Process 2015, 1(1).
    104. Marlin core team, G0-G1-Linear move, Available at: https://marlinfw.org/docs/gcode/G000-G001.html Accessed December 25, 2021.
    105. 張耀邦,「新型主動脈瘤支架設計及製作並以仿真主動脈瘤血管模型進行功能驗證」,碩士,機械工程系,國立臺灣科技大學,2021。
    106. Douglas, C.M. Design and analysis of experiments. 2001.
    107. Engers, M.; Stewart, K.; Liu, J.; Pott, P. Development of a realistic venepuncture phantom. Curr Dir Biomed Eng 2020, 6(3), 402-405.
    108. Brandt-Wunderlich, C.; Schmidt, W.; Grabow, N.; Stiehm, M.; Siewert, S.; Andresen, R.; Schmitz, K. Support function of self-expanding nitinol stents – Are radial resistive force and crush resistance comparable?. Curr Dir Biomed Eng 2019, 5(1), 465-467.
    109. Camasão, D.B.; Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review, Materials Today Bio 2021, 10, 100106.
    110. Spergel, L.M.; Ravani, P.; Asif, A.; Roy-Chaudhury. P; Besarab, A. Autogenous arteriovenous fistula options. J Nephrol 2007, 20(3), 288-98.
    111. Sgroi, M.D.; Patel, M.S.; Wilson, S.E.; Jennings, W.C.; Blebea, J.; Huber, T.S. The optimal initial choice for permanent arteriovenous hemodialysis access. J Vasc Surg 2013, 58(2), 539-48.
    112. Tyagi, R.; Han, R.; Ahmed, O.; Navuluri, R. Endovascular arteriovenous fistula creation. Adv Radiat Oncol 2021, 3, 63-71.
    113. ASTM F3067, Guide for radial loading of balloon expandable and self expanding vascular stents.
    114. Covera Vascular Covered Stent, Available at: https://avir.org/wp-content/uploads/sites/68/2021/03/Jackie-Ruszkowski-BD-11005_Covera-Cephalic-Arch-Brochure_FINAL.pdf Accessed December 25, 2021.
    115. Berg, V.D.; Jos, C.; Lichtenberg, M. How self-expanding bare-metal stent design can affect procedural results. Supplement to endovascular today europe 2018, 6(6), 13.
    116. Python FlexTM, Available at: https://formfutura.sharepoint.com/sites/downloads/Shared%20Documents/Forms/AllItems.aspx?id=%2Fsites%2Fdownloads%2FShared%20Documents%2FDownloads%20Server%2FMaterials%2FFilaments%2FFormFutura%20Filaments%2FPython%20Flex%2FData%20Sheets%20and%20Declarations%2FTDS%20%2D%20Python%20Flex%2Epdf&parent=%2Fsites%2Fdownloads%2FShared%20Documents%2FDownloads%20Server%2FMaterials%2FFilaments%2FFormFutura%20Filaments%2FPython%20Flex%2FData%20Sheets%20and%20Declarations Accessed December 25, 2021.
    117. Brown, P.W.G. Preoperative radiological assessment for vascular access. Eur J Vasc Endovasc Surg 2006, 31(1), 64-69.

    無法下載圖示 全文公開日期 2032/02/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE