簡易檢索 / 詳目顯示

研究生: Alfin Kurniawan
Alfin Kurniawan
論文名稱: Surface-Functionalized Electrospun Poly(N-vinylpyrrolidone) Fibers for Drug Delivery and Surface-Enhanced Raman Spectroscopy (SERS) Applications
Surface-Functionalized Electrospun Poly(N-vinylpyrrolidone) Fibers for Drug Delivery and Surface-Enhanced Raman Spectroscopy (SERS) Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 徐振哲
李振綱
Suryadi Ismadji
魏大欽
吳宗信
Cheng-Che (Jerry) Hsu
Zhi-Hong Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 140
中文關鍵詞: 1D NanostructureElectrospinningPoly(N-vinylpyrrolidone)Aminosilane surface functionalizationGold nanoparticlesSustained releaseSurface-enhanced Raman spectroscopyFree-standing substrateOrganic dyes
外文關鍵詞: 1D Nanostructure, Electrospinning, Poly(N-vinylpyrrolidone), Aminosilane surface functionalization, Gold nanoparticles, Sustained release, Surface-enhanced Raman spectroscopy, Free-standing substrate, Organic dyes
相關次數: 點閱:376下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,奈米科技及技術被廣泛的應用於各領域之中,例如能源、環境及醫療領域。其中,以電紡絲技術所製備的奈米纖維更是扮演重要的角色,因其具有比其他奈米結構更大的比表面積、機械性質、具有微孔洞結構及表面可修飾性等。本論文將探討以電紡絲技術製備平均直徑為 77 ± 21至550 ± 50奈米,均勻且平整的親水性及生物可分解之聚乙烯吡咯烷酮 (poly(N-vinyl pyrrolidone), PVP)高分子奈米纖維。值得一提的是,奈米纖維的表面結構及纖維直徑可藉由調整電紡絲操作參數,例如高分子濃度、施加電壓及針尖至收集板間距而有所改變。另外,溶劑的選擇於電紡絲至成也扮演重要角色,本論文選用了甲醇、乙醇以及純水其其混和物,例如甲醇與水及乙醇與水的混和物,乙探討不同溶劑對電紡絲奈米纖維的結構及表面型態的影響。
    近年來,薑黃素(Curcumin)被應用於生物及醫藥研究上,但因其低水溶性及低生物吸收性所以難以被投入於臨床治療。本論文將以薑黃素為釋放藥物,設計藥物釋放系統,並藉由釋放動力學機制以描述藥物釋放情形,並繪製釋放曲線作為最適化依據以達長效性釋放目的。為使薑黃素成功修飾於 PVP電紡絲纖維上,本論文使用(3-氨基丙基)三乙氧基矽烷 (3-aminaopropyltriethoxysilane, APTES),以修飾氨官能基於奈米纖維表面,並利用氨官能基於超音波共振中形成薑黃素-PVP及奈米金粒子之共軛物(CUR-PGNPs@NH2-PVP),其藥物修飾率約為54.2 ± 1.8%。由釋放曲線結果可得到,起初的數小時薑黃素有劇烈釋放的傾向,但隨後薑黃素可持續兩天的穩定釋放。除此之外,釋放環境也影響薑黃素的釋放效率。本論文結果顯示,薑黃素釋放效率pH 5 > pH 6 > pH 7。而藉由Korsmeyer-Peppas釋放模型,可擬合本論文利用CUR-PGNPs@NH2-PVP所達成之兩階段式薑黃素釋放曲線,其結果說明第一階段的釋放機制為non-Fickian 擴散,而第二階段的穩定釋放機制為符合Fickian釋放。然而,為測試此藥物釋放設計對生物體不會造成毒害,因此利用CUR-PGNPs@NH2-PVP於乳酸脫氫酶(LDH)生物相容性測試,以探討薑黃素於不同時間釋放劑量下對於老鼠纖維母細胞(L929)之危害程度。其結果顯示,CUR-PGNPs@NH2-PVP不僅可成功釋放薑黃素於癌症治療,也可以使L-929細胞順利生長。
    另外,電紡絲製備的奈米纖維也被應用於表面增強拉曼(Surface-enhanced Raman spectroscopy, SERS)研究之中。本論文將結合電紡絲技術及鍛燒方法將奈米金粒子修飾於PVP奈米電紡絲纖維上。奈米金粒子於電紡絲纖維上的覆蓋率及大小可藉由調整鍛燒溫度而有不同表現。結果顯示於鍛燒溫度500至700°C還原之奈米金粒子,能均勻覆蓋於PVP電紡絲表面,並具有較好的SERS訊號。另一方面,於500°C修飾的奈米金粒子(500/AuNPs-F),具有較強的SERS 訊號,且對甲基橙及甲基藍的偵測範圍能從數十nM至數百μM。值得一提的是,利用該方法所製備的SERS基材,於單一感測或是雙重系統偵測中具有高的再現性,分別為±10%及±12%。500/AuNPs-F,於真實樣品,溪水及自來水的偵測當中,呈現令人滿意之結果,其spike recovery為92.6及96.6%,且再現性誤差值皆小於15%。


    The emergence of nanoscience and nanotechnology has led to a large number of research activity in these exciting and rapidly growing fields with many potential applications, spanning from energy and environmental sustainability to health care. In the last two decades, a large number of nanostructured materials displaying unique properties has been synthesized and studied whereas electrospun nanofibers are of great importance due to their large surface area to volume ratio, excellent mechanical properties, and tunable porosity and surface characteristics. In the present study, a hydrophilic and biodegradable synthetic polymer, poly(N-vinylpyrrolidone) (PVP), was transformed into smooth and bead-free fibers with average diameters ranging from 72  21 and 550  50 nm through electrospinning. The electrospinning parameters including polymer solution concentration, applied voltage, and the tip-to-collector distance were investigated in relation with the morphological structure and average diameter of the PVP fibers being produced. Three different types of solvents (i.e., methanol, ethanol, and water) and their binary mixtures (i.e., methanol/water and ethanol/water) were used to prepare the electrospinning dopes and the effects of the solvent properties on the electrospinnability and morphological structure of the resulting PVP fibers were also studied.

    The second part of this dissertation describes the preparation and surface functionalization of PVP fiber mat for controlled drug release application. The use of electrospun fibrous materials as a drug carrier could be promising in the future for a wide range of biomedical applications, such as wound dressings. Curcumin (CUR) has a wide spectrum of biological and pharmacological activities, yet problems of its bioavailability remained a major challenge in preclinical studies. In this regard, the design of the delivery systems with CUR as a model drug featuring dual release process – an initial burst followed by sustained release – to provide the optimal drug pharmacokinetics in the therapeutic region has been actively pursued. The 3-aminopropyltriethoxysilane (APTES)-functionalized PVP fibers (NH2-PVP) were employed as a free-standing substrate for immobilization of CUR-PVP-capped gold nanoparticles (CUR-PGNPs) conjugates. The CUR-PGNPs conjugate was synthesized by sonication and the drug entrapment percentage was found to be 54.2  1.8. CUR-PGNPs immobilized on NH2-PVP fibers showed a moderate burst release during the first few hours, followed by a sustained release lasting for 2 days. The drug release was also found pH-dependent (pH 5.0 > 6.0 > 7.4). The two-stage release profiles of CUR-PGNPs@NH2-PVP fibers were fitted well to Korsmeyer-Peppas model, indicating a non-Fickian diffusion mechanism for initial burst release and Fickian diffusion-controlled mechanism for the sustained release. Initial biocompatibility assessments based on the lactate dehydrogenase (LDH) release assay and morphological examination by a scanning electron microscope (SEM) with L-929 mouse fibroblasts revealed that CUR-PGNPs@NH2-PVP scaffold was capable of supporting cell growth over a culture period of 3 days.

    The third part of this dissertation describes the fabrication of electrospun fiber mats decorated with plasmonic nanoparticles for analytical application. In the past few years, the application of the electrospun nanomaterials to surface-enhanced Raman spectroscopy (SERS) is a rapidly evolving field which holds potential for future developments in the generation of portable plasmonic-based detection platforms. In this dissertation, a simple approach to fabricate electrospun PVP mats surface decorated with gold nanoparticles (AuNPs) by combining electrospinning and calcination processes was presented. AuNPs were synthesized by the citrate reduction method and further immobilized on the fiber mat surface through electrostatic interactions between positively charged aminosilane groups and negatively charged AuNPs. The size and coverage density of AuNPs on the PVP fiber mats could be tuned by varying calcination temperatures. Calcination of AuNPs-decorated PVP mats at 500-700 C resulted in the uniform decoration of high density AuNPs with very narrow gaps on every single fibers, which in turn contribute to strong electromagnetic SERS enhancement. The robust free-standing AuNPs-decorated PVP mat calcined at 500 C (hereafter denoted as 500/AuNPs-F) exhibited high SERS activity toward cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes in single and binary systems with a detection range from tens of nM to a few hundred M. The proposed fiber-based SERS substrate exhibited high reproducibility with the spot-to-spot variation in SERS signal intensities was 10% and 12% for single and binary dye systems, respectively. The determination of MB and MO in spiked river water and tap water with 500/AuNPs-F substrate gave satisfactory results in terms of the percent spike recoveries (ranging from 92.6 to 96.6%) and reproducibility (%RSD values less than 15 for all samples).

    Contents Abstract i Acknowledgements vi Table of contents viii Abbreviations x List of figures xi List of tables xvi Chapter 1. Introduction 1. Fabrication of smooth and bead-free PVP fibers: Optimization of the processing and solution parameters 1 2. Fabrication of aminosilane-functionalized PVP fibers incorporated with curcumin conjugated gold nanoparticles (CUR-GNPs) for drug delivery 3 3. Fabrication of free-standing SERS-active substrate based on AuNPs-decorated PVP fibers for detection of organic dyes 4 Chapter 2. Literature Review 1. Low -dimensional nanostructures 8 1-1. Characteristics of 1D architectures compared with 2D and 3D counterparts 8 1-2. Nanofibers and the fabrication methods 10 1-3. Electrospinning: Fundamentals, setup, and key process parameters 13 1-3-1. Jet initiation 14 1-3-2. Jet thinning 16 1-3-3. Jet instabilities 16 1-3-4. Jet solidification 17 2. Fiber-based drug delivery systems 17 2-1. Curcumin 18 3. Surface-enhanced Raman spectroscopy (SERS) 22 3-1. Plasmonic materials for SERS 24 3-2. Electromagnetic enhancement 27 3-3. Chemical enhancement 28 3-4. Development of solid-state SERS detection platforms: Nanostructured arrays, particle-on-film, and electrospun nanofibrous membranes 30 4. Perspective on plasma-assisted synthesis of nanostructures 35 Chapter 3. Experimental 1. Chemicals 40 3-1. Preparation of the spinning dopes 40 3-2. Synthesis of GNPs, PVP-capped GNPs (PGNPs), and CUR-PGNPs 40 3-3. Surface functionalization of crosslinked PVP fibers with NH2 groups 41 3-4. SERS measurements 41 2. Laboratory equipment and analytical instruments 41 3. Experimental procedures 42 3-5. Fabrication of smooth, bead-free PVP fibers and its surface functionalization through the self-assembled monolayer of aminosilane 42 3-5-1. Preparation of PVP spinning dopes and electrospinning 42 3-5-2. Crosslinking of as-spun PVP fibers 43 3-5-3. Surface functionalization of CL-PVP fibers with NH2 groups 43 3-6. Fiber-based delivery system of CUR based on CUR-PGNPs conjugates immobilized at NH2-PVP fiber surface 44 3-6-1. Synthesis of GNPs and PGNPs 44 3-6-2. Preparation of CUR-PGNPs conjugates and their immobilization at NH2-PVP fiber surface 44 3-7. In vitro drug release 45 3-8. Biocompatibility evaluation 46 3-8-1. Cell culture 46 3-8-2. Cell viability and proliferation assay 47 3-8-3. Morphological evaluation of L-929 fibroblasts by SEM 47 3-9. Fabrication of free-standing SERS substrates based on AuNPs-decorated PVP fibers and the heat-treated products 47 3-9-1. Surface immobilization of AuNPs onto NH2-PVP fibers 47 3-9-2. Preparation of T/AuNPs-F mats by thermal annealing 48 4. Characterizations of the nanofibrous samples 48 4-1. Fourier Transform Infrared (FTIR) Spectroscopy 48 4-2. Scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDX) 48 4-3. X-ray diffraction (XRD) 49 4-4. Thermogravimetry/differential thermal gravimetry (TG/DTG) analysis 49 4-5. Water contact angle (WCA) measurements 49 4-6. SERS measurements 49 Chapter 4. Results and Discussion 1. Characteristics of electrospun PVP fibers 53 1-1. Effects of solution parameters 53 1-2. Effects of processing parameters (applied voltage and the tip-to-electrode distance) 53 1-3. Characteristics of aminosilane-functionalized CL-PVP fibers 59 2. Drug release of CUR conjugated PGNPs immobilized on NH2-PVP fibers 61 2-1. Characteristics of GNPs, PGNPs, and CUR-PGNPs conjugates 61 2-2. Morphological analysis of the nanofibrous mats 63 2-3. XRD studies of the nanofibrous mats 64 2-4. Thermal degradation behavior of the nanofibrous mats 65 2-5. In vitro drug release and kinetic modeling 67 2-6. Cell viability 76 3. Fabrication of free-standing SERS platforms based on calcined AuNPs-decorated NH2-PVP fiber mats (T/AuNPs-F) 79 3-1. SEM analysis of the electrospun fiber mats 79 3-2. XRD studies of AuNPs-NH2-PVP and T/AuNPs-F mats 82 3-3. Surface wettability of the nanofibrous substrates 83 3-4. SERS activity of the nanofibrous substrates 84 3-5. Evaluation of SERS reproducibility and determination of the AEF 89 3-6. SERS detection of MB and MO dyes in several water matrices 92 Chapter 5. Conclusions 95 References 97

    References

    1. Yuan, B. and L. Cademartiri, Flexible One-Dimensional Nanostructures: A Review. Journal of Materials Science & Technology, 2015. 31(6): p. 607-615.
    2. Norris, I.D., M.M. Shaker, F.K. Ko, and A.G. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synthetic Metals, 2000. 114(2): p. 109-114.
    3. MacDiarmid, A.G., W.E. Jones, I.D. Norris, J. Gao, A.T. Johnson, N.J. Pinto, J. Hone, B. Han, F.K. Ko, H. Okuzaki, and M. Llaguno, Electrostatically-generated nanofibers of electronic polymers. Synthetic Metals, 2001. 119(1): p. 27-30.
    4. Nuraje, N., W.S. Khan, Y. Lei, M. Ceylan, and R. Asmatulu, Superhydrophobic electrospun nanofibers. Journal of Materials Chemistry A, 2013. 1(6): p. 1929-1946.
    5. Wessel, C., R. Ostermann, R. Dersch, and B.M. Smarsly, Formation of Inorganic Nanofibers from Preformed TiO2 Nanoparticles via Electrospinning. The Journal of Physical Chemistry C, 2011. 115(2): p. 362-372.
    6. Kurniawan, A., F. Gunawan, A.T. Nugraha, S. Ismadji, and M.-J. Wang, Biocompatibility and drug release behavior of curcumin conjugated gold nanoparticles from aminosilane-functionalized electrospun poly(N-vinyl-2-pyrrolidone) fibers. International Journal of Pharmaceutics, 2017. 516(1): p. 158-169.
    7. Hayama, M., K.-i. Yamamoto, F. Kohori, T. Uesaka, Y. Ueno, H. Sugaya, I. Itagaki, and K. Sakai, Nanoscopic behavior of polyvinylpyrrolidone particles on polysulfone/polyvinylpyrrolidone film. Biomaterials, 2004. 25(6): p. 1019-1028.
    8. Wang, L., M.-W. Chang, Z. Ahmad, H. Zheng, and J.-S. Li, Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chemical Engineering Journal, 2017. 307(Supplement C): p. 661-669.
    9. Zhou, Y., P. Qi, Z. Zhao, Q. Liu, and Z. Li, Fabrication and characterization of fibrous HAP/PVP/PEO composites prepared by sol-electrospinning. RSC Advances, 2014. 4(32): p. 16731-16738.
    10. Sill, T.J. and H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
    11. Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal, Bioavailability of Curcumin: Problems and Promises. Molecular Pharmaceutics, 2007. 4(6): p. 807-818.
    12. Wang, C., C. Ma, Z. Wu, H. Liang, P. Yan, J. Song, N. Ma, and Q. Zhao, Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study. Nanoscale Research Letters, 2015. 10: p. 439.
    13. Croce, R., F. Cinà, A. Lombardo, G. Crispeyn, C.I. Cappelli, M. Vian, S. Maiorana, E. Benfenati, and D. Baderna, Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicology and Environmental Safety, 2017. 144(Supplement C): p. 79-87.
    14. Srivastava, S.J., N.D. Singh, A.K. Srivastava, and R. Sinha, Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustes fossilis. Aquatic Toxicology, 1995. 31(3): p. 241-247.
    15. Ishikawa, M., Y. Maruyama, J.Y. Ye, and M. Futamata, Single-Molecule Imaging and Spectroscopy Using Fluorescence and Surface-Enhanced Raman Scattering. Journal of Biological Physics, 2002. 28(4): p. 573-585.
    16. Gong, Z., H. Du, F. Cheng, C. Wang, C. Wang, and M. Fan, Fabrication of SERS Swab for Direct Detection of Trace Explosives in Fingerprints. ACS Applied Materials & Interfaces, 2014. 6(24): p. 21931-21937.
    17. Huang, S., W. Yan, M. Liu, and J. Hu, Detection of difenoconazole pesticides in pak choi by surface-enhanced Raman scattering spectroscopy coupled with gold nanoparticles. Analytical Methods, 2016. 8(23): p. 4755-4761.
    18. Yang, T., X. Guo, H. Wang, S. Fu, Y. wen, and H. Yang, Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosensors and Bioelectronics, 2015. 68(Supplement C): p. 350-357.
    19. Sharma, B., R.R. Frontiera, A.-I. Henry, E. Ringe, and R.P. Van Duyne, SERS: Materials, applications, and the future. Materials Today, 2012. 15(1): p. 16-25.
    20. Zhang, L., X. Lang, A. Hirata, and M. Chen, Wrinkled Nanoporous Gold Films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement. ACS Nano, 2011. 5(6): p. 4407-4413.
    21. Jayram, N.D., S. Sonia, P.S. Kumar, L. Marimuthu, Y. Masuda, D. Mangalaraj, N. Ponpandian, C. Viswanathan, and S. Ramakrishna, Highly monodispersed Ag embedded SiO2 nanostructured thin film for sensitive SERS substrate: growth, characterization and detection of dye molecules. RSC Advances, 2015. 5(57): p. 46229-46239.
    22. Niu, C., B. Zou, Y. Wang, L. Cheng, H. Zheng, and S. Zhou, Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres. Langmuir, 2016. 32(3): p. 858-863.
    23. Sajanlal, P.R., T.S. Sreeprasad, A.K. Samal, and T. Pradeep, Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Reviews, 2011. 2: p. 10.3402/nano.v2i0.5883.
    24. Cheng, G., T.-H. Chang, Q. Qin, H. Huang, and Y. Zhu, Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density. Nano Letters, 2014. 14(2): p. 754-758.
    25. Tiwari, J.N., R.N. Tiwari, and K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012. 57(4): p. 724-803.
    26. Carolin, S.-A., X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications. Reports on Progress in Physics, 2015. 78(6): p. 062501.
    27. Garg, K. and G.L. Bowlin, Electrospinning jets and nanofibrous structures. Biomicrofluidics, 2011. 5(1): p. 013403.
    28. Martín, J., J. Maiz, J. Sacristan, and C. Mijangos, Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications. Polymer, 2012. 53(6): p. 1149-1166.
    29. Wang, P., Y. Wang, and L. Tong, Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light: Science &Amp; Applications, 2013. 2: p. e102.
    30. Fridrikh, S.V., J.H. Yu, M.P. Brenner, and G.C. Rutledge, Controlling the Fiber Diameter during Electrospinning. Physical Review Letters, 2003. 90(14): p. 144502.
    31. Pokorny, P., E. Kostakova, F. Sanetrnik, P. Mikes, J. Chvojka, T. Kalous, M. Bilek, K. Pejchar, J. Valtera, and D. Lukas, Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry Chemical Physics, 2014. 16(48): p. 26816-26822.
    32. Li, D. and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 2004. 16(14): p. 1151-1170.
    33. Shin, Y.M., M.M. Hohman, M.P. Brenner, and G.C. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer, 2001. 42(25): p. 09955-09967.
    34. Hohman, M.M., M. Shin, G. Rutledge, and M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids, 2001. 13(8): p. 2201-2220.
    35. Zuo, W., M. Zhu, W. Yang, H. Yu, Y. Chen, and Y. Zhang, Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science, 2005. 45(5): p. 704-709.
    36. Pan, Z., P. Jiang, Q. Fan, B. Ma, and H. Cai, Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 82B(1): p. 246-252.
    37. Shen, W. and Y.-L. Hsieh, Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydrate Polymers, 2014. 102(Supplement C): p. 893-900.
    38. Paudel, K.S., M. Milewski, C.L. Swadley, N.K. Brogden, P. Ghosh, and A.L. Stinchcomb, Challenges and opportunities in dermal/transdermal delivery. Therapeutic delivery, 2010. 1(1): p. 109-131.
    39. Verreck, G., I. Chun, J. Rosenblatt, J. Peeters, A.V. Dijck, J. Mensch, M. Noppe, and M.E. Brewster, Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. Journal of Controlled Release, 2003. 92(3): p. 349-360.
    40. Taepaiboon, P., U. Rungsardthong, and P. Supaphol, Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. European Journal of Pharmaceutics and Biopharmaceutics, 2007. 67(2): p. 387-397.
    41. Lee, W.-H., C.-Y. Loo, M. Bebawy, F. Luk, R.S. Mason, and R. Rohanizadeh, Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Current Neuropharmacology, 2013. 11(4): p. 338-378.
    42. Ahmed, T. and A.-H. Gilani, Therapeutic Potential of Turmeric in Alzheimer's Disease: Curcumin or Curcuminoids? Phytotherapy Research, 2014. 28(4): p. 517-525.
    43. Balaji, S. and B. Chempakam, Toxicity prediction of compounds from turmeric (Curcuma longa L). Food and Chemical Toxicology, 2010. 48(10): p. 2951-2959.
    44. Ireson, C., S. Orr, D.J.L. Jones, R. Verschoyle, C.-K. Lim, J.-L. Luo, L. Howells, S. Plummer, R. Jukes, M. Williams, W.P. Steward, and A. Gescher, Characterization of Metabolites of the Chemopreventive Agent Curcumin in Human and Rat Hepatocytes and in the Rat <em>in Vivo</em>, and Evaluation of Their Ability to Inhibit Phorbol Ester-induced Prostaglandin E<sub>2</sub> Production. Cancer Research, 2001. 61(3): p. 1058.
    45. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    46. Katrin, K., K. Harald, I. Irving, R.D. Ramachandra, and S.F. Michael, Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter, 2002. 14(18): p. R597.
    47. Guo, H., L. He, and B. Xing, Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environmental Science: Nano, 2017. 4(11): p. 2093-2107.
    48. Laing, S., L.E. Jamieson, K. Faulds, and D. Graham, Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry, 2017. 1: p. 0060.
    49. Casadio, F., M. Leona, J.R. Lombardi, and R. Van Duyne, Identification of Organic Colorants in Fibers, Paints, and Glazes by Surface Enhanced Raman Spectroscopy. Accounts of Chemical Research, 2010. 43(6): p. 782-791.
    50. Wustholz, K.L., C.L. Brosseau, F. Casadio, and R.P. Van Duyne, Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. Physical Chemistry Chemical Physics, 2009. 11(34): p. 7350-7359.
    51. Brosseau, C.L., K.S. Rayner, F. Casadio, C.M. Grzywacz, and R.P. Van Duyne, Surface-Enhanced Raman Spectroscopy: A Direct Method to Identify Colorants in Various Artist Media. Analytical Chemistry, 2009. 81(17): p. 7443-7447.
    52. Alyson, V.W., C. Francesca, and P.V.D. Richard, Identification and Characterization of Artists' Red Dyes and Their Mixtures by Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2007. 61(9): p. 994-1000.
    53. Zhang, Y., S. Zhao, J. Zheng, and L. He, Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC Trends in Analytical Chemistry, 2017. 90(Supplement C): p. 1-13.
    54. Zhao, C., Y. Zhu, Y. Su, Z. Guan, A. Chen, X. Ji, X. Gui, R. Xiang, and Z. Tang, Tailoring Plasmon Resonances in Aluminium Nanoparticle Arrays Fabricated Using Anodic Aluminium Oxide. Advanced Optical Materials, 2015. 3(2): p. 248-256.
    55. Jérôme, M. and P. Jérôme, Fabrication of aluminium nanostructures for plasmonics. Journal of Physics D: Applied Physics, 2015. 48(18): p. 184002.
    56. Cui, L., D.-Y. Wu, A. Wang, B. Ren, and Z.-Q. Tian, Charge-Transfer Enhancement Involved in the SERS of Adenine on Rh and Pd Demonstrated by Ultraviolet to Visible Laser Excitation. The Journal of Physical Chemistry C, 2010. 114(39): p. 16588-16595.
    57. Lin, X.-F., B. Ren, Z.-L. Yang, G.-K. Liu, and Z.-Q. Tian, Surface-enhanced Raman spectroscopy with ultraviolet excitation. Journal of Raman Spectroscopy, 2005. 36(6-7): p. 606-612.
    58. Cui, L., S. Mahajan, R.M. Cole, B. Soares, P.N. Bartlett, J.J. Baumberg, I.P. Hayward, B. Ren, A.E. Russell, and Z.Q. Tian, UV SERS at well ordered Pd sphere segment void (SSV) nanostructures. Physical Chemistry Chemical Physics, 2009. 11(7): p. 1023-1026.
    59. McNay, G., D. Eustace, W.E. Smith, K. Faulds, and D. Graham, Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Applied Spectroscopy, 2011. 65(8): p. 825-837.
    60. Lombardi, J.R. and R.L. Birke, A Unified Approach to Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2008. 112(14): p. 5605-5617.
    61. Schlücker, S., Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie International Edition, 2014. 53(19): p. 4756-4795.
    62. Mulvihill, M.J., X.Y. Ling, J. Henzie, and P. Yang, Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Journal of the American Chemical Society, 2010. 132(1): p. 268-274.
    63. Sau, T.K., A.L. Rogach, F. Jäckel, T.A. Klar, and J. Feldmann, Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Advanced Materials, 2010. 22(16): p. 1805-1825.
    64. Xu, H., J. Aizpurua, M. Käll, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E, 2000. 62(3): p. 4318-4324.
    65. Camden, J.P., J.A. Dieringer, Y. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, and R.P. Van Duyne, Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008. 130(38): p. 12616-12617.
    66. Zenidaka, A., T. Honda, and M. Terakawa, Physics in plasmonic and Mie scattered near-field for efficient surface-enhanced Raman scattering template. Applied Physics A, 2011. 105(2): p. 393-398.
    67. Xie, W., P. Qiu, and C. Mao, Bio-imaging, detection and analysis by using nanostructures as SERS substrates. Journal of materials chemistry, 2011. 21(14): p. 5190-5202.
    68. Musumeci, A., D. Gosztola, T. Schiller, N.M. Dimitrijevic, V. Mujica, D. Martin, and T. Rajh, SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites). Journal of the American Chemical Society, 2009. 131(17): p. 6040-6041.
    69. Livingstone, R., X. Zhou, M.C. Tamargo, J.R. Lombardi, L.G. Quagliano, and F. Jean-Mary, Surface Enhanced Raman Spectroscopy of Pyridine on CdSe/ZnBeSe Quantum Dots Grown by Molecular Beam Epitaxy. The Journal of Physical Chemistry C, 2010. 114(41): p. 17460-17464.
    70. Quagliano, L.G., Observation of Molecules Adsorbed on III-V Semiconductor Quantum Dots by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2004. 126(23): p. 7393-7398.
    71. Sun, Z., B. Zhao, and J.R. Lombardi, ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules: Observation of a charge-transfer resonance. Applied Physics Letters, 2007. 91(22): p. 221106.
    72. Ling, X., S. Huang, S. Deng, N. Mao, J. Kong, M.S. Dresselhaus, and J. Zhang, Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Accounts of Chemical Research, 2015. 48(7): p. 1862-1870.
    73. Ling, X., L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, and Z. Liu, Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters, 2010. 10(2): p. 553-561.
    74. Kneipp, K., Chemical Contribution to SERS Enhancement: An Experimental Study on a Series of Polymethine Dyes on Silver Nanoaggregates. The Journal of Physical Chemistry C, 2016. 120(37): p. 21076-21081.
    75. Njoki, P.N., I.I.S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles. The Journal of Physical Chemistry C, 2007. 111(40): p. 14664-14669.
    76. Rycenga, M., X. Xia, C.H. Moran, F. Zhou, D. Qin, Z.-Y. Li, and Y. Xia, Generation of Hot Spots with Silver Nanocubes for Single-Molecule Detection by Surface-Enhanced Raman Scattering. Angewandte Chemie International Edition, 2011. 50(24): p. 5473-5477.
    77. Lee, S.Y., L. Hung, G.S. Lang, J.E. Cornett, I.D. Mayergoyz, and O. Rabin, Dispersion in the SERS Enhancement with Silver Nanocube Dimers. ACS Nano, 2010. 4(10): p. 5763-5772.
    78. Cao, B., B. Liu, and J. Yang, Facile synthesis of single crystalline gold nanoplates and SERS investigations of 4-aminothiophenol. CrystEngComm, 2013. 15(28): p. 5735-5738.
    79. Potara, M., S. Boca, E. Licarete, A. Damert, M.-C. Alupei, M.T. Chiriac, O. Popescu, U. Schmidt, and S. Astilean, Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging. Nanoscale, 2013. 5(13): p. 6013-6022.
    80. Wu, C., X. Zhou, and J. Wei, Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction. Nanoscale Research Letters, 2015. 10: p. 354.
    81. Orendorff, C.J., A. Gole, T.K. Sau, and C.J. Murphy, Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers:  Sandwich Architecture and Nanoparticle Shape Dependence. Analytical Chemistry, 2005. 77(10): p. 3261-3266.
    82. Zhang, L., B. Wang, G. Zhu, and X. Zhou, Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 133(Supplement C): p. 411-416.
    83. Wiley, B.J., Y. Chen, J.M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, and Y. Xia, Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Letters, 2007. 7(4): p. 1032-1036.
    84. Li, M., S.K. Cushing, H. Liang, S. Suri, D. Ma, and N. Wu, Plasmonic Nanorice Antenna on Triangle Nanoarray for Surface-Enhanced Raman Scattering Detection of Hepatitis B Virus DNA. Analytical Chemistry, 2013. 85(4): p. 2072-2078.
    85. Ye, J., F. Wen, H. Sobhani, J.B. Lassiter, P. Van Dorpe, P. Nordlander, and N.J. Halas, Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Letters, 2012. 12(3): p. 1660-1667.
    86. Wu, H.-Y., C.J. Choi, and B.T. Cunningham, Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array. Small, 2012. 8(18): p. 2878-2885.
    87. Yu, Q., P. Guan, D. Qin, G. Golden, and P.M. Wallace, Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Letters, 2008. 8(7): p. 1923-1928.
    88. Dapeng, X., D. Zhanmin, and S. Jia-Lin, Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method. Nanotechnology, 2012. 23(12): p. 125705.
    89. Haes, A.J., D.A. Stuart, S. Nie, and R.P. Van Duyne, Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms. Journal of Fluorescence, 2004. 14(4): p. 355-367.
    90. Mahajan, S., J.J. Baumberg, A.E. Russell, and P.N. Bartlett, Reproducible SERRS from structured gold surfaces. Physical Chemistry Chemical Physics, 2007. 9(45): p. 6016-6020.
    91. Yan, J., X. Han, J. He, L. Kang, B. Zhang, Y. Du, H. Zhao, C. Dong, H.-L. Wang, and P. Xu, Highly Sensitive Surface-Enhanced Raman Spectroscopy (SERS) Platforms Based on Silver Nanostructures Fabricated on Polyaniline Membrane Surfaces. ACS Applied Materials & Interfaces, 2012. 4(5): p. 2752-2756.
    92. Severyukhina, A.N., B.V. Parakhonskiy, E.S. Prikhozhdenko, D.A. Gorin, G.B. Sukhorukov, H. Möhwald, and A.M. Yashchenok, Nanoplasmonic Chitosan Nanofibers as Effective SERS Substrate for Detection of Small Molecules. ACS Applied Materials & Interfaces, 2015. 7(28): p. 15466-15473.
    93. He, D., B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano, 2009. 3(12): p. 3993-4002.
    94. Lee, J., Q. Zhang, S. Park, A. Choe, Z. Fan, and H. Ko, Particle–Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2016. 8(1): p. 634-642.
    95. Bantz, K.C. and C.L. Haynes, Surface-Enhanced Raman Scattering Substrates Fabricated Using Electroless Plating on Polymer-Templated Nanostructures. Langmuir, 2008. 24(11): p. 5862-5867.
    96. Zhang, L., X. Gong, Y. Bao, Y. Zhao, M. Xi, C. Jiang, and H. Fong, Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir, 2012. 28(40): p. 14433-14440.
    97. Chang, H.L., T. Limei, A. Abdennour, K. Ramesh, and S. Srikanth, Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology, 2011. 22(27): p. 275311.
    98. Ostrikov, K. and S. Xu, Introduction, in Plasma-Aided Nanofabrication. 2007, Wiley-VCH Verlag GmbH & Co. KGaA. p. 1-39.
    99. Shintani, H., A. Sakudo, P. Burke, and G. McDonnell, Gas plasma sterilization of microorganisms and mechanisms of action. Experimental and Therapeutic Medicine, 2010. 1(5): p. 731-738.
    100. Moisan, M., P. Levif, J. Séguin, and J. Barbeau, Sterilization/disinfection using reduced-pressure plasmas: some differences between direct exposure of bacterial spores to a discharge and their exposure to a flowing afterglow. Journal of Physics D: Applied Physics, 2014. 47(28): p. 285404.
    101. Sano, N., T. Kawashima, J. Fujikawa, T. Fujimoto, T. Kitai, T. Kanki, and A. Toyoda, Decomposition of Organic Compounds in Water by Direct Contact of Gas Corona Discharge:  Influence of Discharge Conditions. Industrial & Engineering Chemistry Research, 2002. 41(24): p. 5906-5911.
    102. Lin, L. and Q. Wang, Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis. Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962.
    103. Hessel, V., A. Anastasopoulou, Q. Wang, G. Kolb, and J. Lang, Energy, catalyst and reactor considerations for (near)-industrial plasma processing and learning for nitrogen-fixation reactions. Catalysis Today, 2013. 211(Supplement C): p. 9-28.
    104. Wang, L., J. Zhang, and W. Jiang, Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2013. 39(Supplement C): p. 103-112.
    105. Kakati, M., B. Bora, U.P. Deshpande, D.M. Phase, V. Sathe, N.P. Lalla, T. Shripathi, S. Sarma, N.K. Joshi, and A.K. Das, Study of a supersonic thermal plasma expansion process for synthesis of nanostructured TiO2. Thin Solid Films, 2009. 518(1): p. 84-90.
    106. Kabir, M.S., R.E. Morjan, O.A. Nerushev, P. Lundgren, S. Bengtsson, P. Enokson, and E.E.B. Campbell, Plasma-enhanced chemical vapour deposition growth of carbon nanotubes on different metal underlayers. Nanotechnology, 2005. 16(4): p. 458.
    107. Wang, X., Z. Hu, X. Chen, and Y. Chen, Preparation of carbon nanotubes and nano-particles by microwave plasma-enhanced chemical vapor deposition. Scripta Materialia, 2001. 44(8): p. 1567-1570.
    108. Bo, Z., Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 2013. 5(12): p. 5180-5204.
    109. Li, M., D. Liu, D. Wei, X. Song, D. Wei, and A.T.S. Wee, Controllable Synthesis of Graphene by Plasma-Enhanced Chemical Vapor Deposition and Its Related Applications. Advanced Science, 2016. 3(11): p. 1600003-n/a.
    110. Davide, M. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
    111. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 2008. 93(13): p. 131501.
    112. Patel, J., L. Němcová, P. Maguire, W.G. Graham, and D. Mariotti, Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology, 2013. 24(24): p. 245604.
    113. Mariotti, D., J. Patel, V. Švrček, and P. Maguire, Plasma–Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering. Plasma Processes and Polymers, 2012. 9(11-12): p. 1074-1085.
    114. Wang, R., S. Zuo, D. Wu, J. Zhang, W. Zhu, K.H. Becker, and J. Fang, Microplasma-Assisted Synthesis of Colloidal Gold Nanoparticles and Their Use in the Detection of Cardiac Troponin I (cTn-I). Plasma Processes and Polymers, 2015. 12(4): p. 380-391.
    115. Zou, J.-J., Y.-p. Zhang, and C.-J. Liu, Reduction of Supported Noble-Metal Ions Using Glow Discharge Plasma. Langmuir, 2006. 22(26): p. 11388-11394.
    116. Cvelbar, U., Towards large-scale plasma-assisted synthesis of nanowires. Journal of Physics D: Applied Physics, 2011. 44(17): p. 174014.
    117. Newsome, T.E. and S.V. Olesik, Electrospinning silica/polyvinylpyrrolidone composite nanofibers. Journal of Applied Polymer Science, 2014. 131(21): p. n/a-n/a.
    118. Lee, J.-H., A. Zhang, S.S. You, and C.M. Lieber, Spontaneous Internalization of Cell Penetrating Peptide-Modified Nanowires into Primary Neurons. Nano Letters, 2016. 16(2): p. 1509-1513.
    119. Frens, G., Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science, 1973. 241: p. 20.
    120. Huang, P., C. Yang, J. Liu, W. Wang, S. Guo, J. Li, Y. Sun, H. Dong, L. Deng, J. Zhang, J. Liu, and A. Dong, Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. Journal of Materials Chemistry B, 2014. 2(25): p. 4021-4033.
    121. Tsai, W.-B., Y.-R. Chen, H.-L. Liu, and J.-Y. Lai, Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydrate Polymers, 2011. 85(1): p. 129-137.
    122. Dehn, W.M., COMPARATIVE SOLUBILITIES IN WATER, IN PYRIDINE AND IN AQUEOUS PYRIDINE. Journal of the American Chemical Society, 1917. 39(7): p. 1399-1404.
    123. Yang, Q., Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang, and Y. Wei, Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics, 2004. 42(20): p. 3721-3726.
    124. Avcı, M.Z. and A.S. Sarac, Transparent poly(methyl methacrylate-co-butyl acrylate) nanofibers. Journal of Applied Polymer Science, 2013. 130(6): p. 4264-4272.
    125. Megelski, S., J.S. Stephens, D.B. Chase, and J.F. Rabolt, Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 2002. 35(22): p. 8456-8466.
    126. Ballengee, J.B. and P.N. Pintauro, Morphological Control of Electrospun Nafion Nanofiber Mats. Journal of The Electrochemical Society, 2011. 158(5): p. B568-B572.
    127. Jacobs, V., R.D. Anandjiwala, and M. Maaza, The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science, 2010. 115(5): p. 3130-3136.
    128. Gautam, A.K., C. Lai, H. Fong, and T.J. Menkhaus, Electrospun polyimide nanofiber membranes for high flux and low fouling microfiltration applications. Journal of Membrane Science, 2014. 466(Supplement C): p. 142-150.
    129. Matthews, J.A., G.E. Wnek, D.G. Simpson, and G.L. Bowlin, Electrospinning of Collagen Nanofibers. Biomacromolecules, 2002. 3(2): p. 232-238.
    130. Askari, M., B. Rezaei, A.M. Shoushtari, P. Noorpanah, M. Abdouss, and M. Ghani, Fabrication of high performance chitosan/polyvinyl alcohol nanofibrous mat with controlled morphology and optimised diameter. The Canadian Journal of Chemical Engineering, 2014. 92(6): p. 1008-1015.
    131. Chen, M., H. Qu, J. Zhu, Z. Luo, A. Khasanov, A.S. Kucknoor, N. Haldolaarachchige, D.P. Young, S. Wei, and Z. Guo, Magnetic electrospun fluorescent polyvinylpyrrolidone nanocomposite fibers. Polymer, 2012. 53(20): p. 4501-4511.
    132. Ignatova, M., K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydrate Research, 2006. 341(12): p. 2098-2107.
    133. Liu, H. and C. Tang, Electrospinning of Cellulose Acetate in Solvent Mixture N,N-Dimethylacetamide (DMAc)/Acetone. Polymer Journal, 2006. 39: p. 65.
    134. Loría-Bastarrachea, M.I., W. Herrera-Kao, J.V. Cauich-Rodríguez, J.M. Cervantes-Uc, H. Vázquez-Torres, and A. Ávila-Ortega, A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). Journal of Thermal Analysis and Calorimetry, 2011. 104(2): p. 737-742.
    135. Borodko, Y., S.E. Habas, M. Koebel, P. Yang, H. Frei, and G.A. Somorjai, Probing the Interaction of Poly(vinylpyrrolidone) with Platinum Nanocrystals by UV−Raman and FTIR. The Journal of Physical Chemistry B, 2006. 110(46): p. 23052-23059.
    136. Haiss, W., N.T.K. Thanh, J. Aveyard, and D.G. Fernig, Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 2007. 79(11): p. 4215-4221.
    137. Behera, M. and S. Ram, Synthesis and characterization of core–shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt. Applied Nanoscience, 2013. 3(1): p. 83-87.
    138. Wang, Y.-J., M.-H. Pan, A.-L. Cheng, L.-I. Lin, Y.-S. Ho, C.-Y. Hsieh, and J.-K. Lin, Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 1997. 15(12): p. 1867-1876.
    139. Singh, D.K., R. Jagannathan, P. Khandelwal, P.M. Abraham, and P. Poddar, In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale, 2013. 5(5): p. 1882-1893.
    140. Hoppe, C.E., M. Lazzari, I. Pardiñas-Blanco, and M.A. López-Quintela, One-Step Synthesis of Gold and Silver Hydrosols Using Poly(N-vinyl-2-pyrrolidone) as a Reducing Agent. Langmuir, 2006. 22(16): p. 7027-7034.
    141. Xia, Y., X. Xia, and H.-C. Peng, Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. Journal of the American Chemical Society, 2015. 137(25): p. 7947-7966.
    142. Thorat, A.A. and S.V. Dalvi, Particle formation pathways and polymorphism of curcumin induced by ultrasound and additives during liquid antisolvent precipitation. CrystEngComm, 2014. 16(48): p. 11102-11114.
    143. Ahmed, A., J. Hearn, W. Abdelmagid, and H. Zhang, Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 2012. 22(48): p. 25027-25035.
    144. Elakkiya, T., R. Sheeja, K. Ramadhar, and T.S. Natarajan, Biocompatibility studies of electrospun nanofibrous membrane of PLLA-PVA blend. Journal of Applied Polymer Science, 2013. 128(5): p. 2840-2846.
    145. Elakkiya, T., G. Malarvizhi, S. Rajiv, and T.S. Natarajan, Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polymer International, 2014. 63(1): p. 100-105.
    146. Guo, G., S. Fu, L. Zhou, H. Liang, M. Fan, F. Luo, Z. Qian, and Y. Wei, Preparation of curcumin loaded poly(?-caprolactone)-poly(ethylene glycol)-poly(?-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells. Nanoscale, 2011. 3(9): p. 3825-3832.
    147. Ramalingam, N., T.S. Natarajan, and S. Rajiv, Preparation and characterization of electrospun curcumin loaded poly(2-hydroxyethyl methacrylate) nanofiber—A biomaterial for multidrug resistant organisms. Journal of Biomedical Materials Research Part A, 2015. 103(1): p. 16-24.
    148. Sun, X.-Z., G.R. Williams, X.-X. Hou, and L.-M. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate Polymers, 2013. 94(1): p. 147-153.
    149. Suwantong, O., P. Opanasopit, U. Ruktanonchai, and P. Supaphol, Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 2007. 48(26): p. 7546-7557.
    150. Sampath, M., R. Lakra, P. Korrapati, and B. Sengottuvelan, Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids and Surfaces B: Biointerfaces, 2014. 117(Supplement C): p. 128-134.
    151. Merrell, J.G., S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, and L.S. Nair, Curcumin Loaded Poly(ε-Caprolactone) Nanofibers: Diabetic Wound Dressing with Antioxidant and Anti-inflammatory Properties. Clinical and experimental pharmacology & physiology, 2009. 36(12): p. 1149-1156.
    152. Higuchi, T., Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences, 1961. 50(10): p. 874-875.
    153. Korsmeyer, R.W., R. Gurny, E. Doelker, P. Buri, and N.A. Peppas, Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 1983. 15(1): p. 25-35.
    154. Srikar, R., A.L. Yarin, C.M. Megaridis, A.V. Bazilevsky, and E. Kelley, Desorption-Limited Mechanism of Release from Polymer Nanofibers. Langmuir, 2008. 24(3): p. 965-974.
    155. Arima, Y. and H. Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 2007. 28(20): p. 3074-3082.
    156. Hopper, A P., J M. Dugan, A A. Gill, O J L. Fox, P W. May, J.W. Haycock, and F. Claeyssens, Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomedical Materials, 2014. 9(4): p. 045009.
    157. Scharstuhl, A., H.A.M. Mutsaers, S.W.C. Pennings, W.A. Szarek, F.G.M. Russel, and F.A.D.T.G. Wagener, Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation. Journal of Cellular and Molecular Medicine, 2009. 13(4): p. 712-725.
    158. He, R., X. Hu, H.C. Tan, J. Feng, C. Steffi, K. Wang, and W. Wang, Surface modification of titanium with curcumin: a promising strategy to combat fibrous encapsulation. Journal of Materials Chemistry B, 2015. 3(10): p. 2137-2146.
    159. Wang, C., C. Ma, Z. Wu, H. Liang, P. Yan, J. Song, N. Ma, and Q. Zhao, Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study. Nanoscale Research Letters, 2015. 10(1): p. 439.
    160. Hendricks, N.R., R. Kothari, X. Wang, and J.J. Watkins, Mesoporous silica/nanoparticle composites prepared by 3-D replication of highly filled block copolymer templates. Journal of Materials Chemistry C, 2014. 2(29): p. 5938-5943.
    161. De Angelis, F., F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nature Photonics, 2011. 5: p. 682.
    162. Liu, W., P. Miao, L. Xiong, Y. Du, X. Han, and P. Xu, Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement. Physical Chemistry Chemical Physics, 2014. 16(41): p. 22867-22873.
    163. Kim, Y.J., X. Sun, J.E. Jones, M. Lin, Q. Yu, and H. Li, Surface modification of SERS substrates with plasma-polymerized trimethylsilane nanocoating. Applied Surface Science, 2015. 331(Supplement C): p. 346-352.
    164. Chen, H.-L., Z.-H. Yang, and S. Lee, Observation of Surface Coverage-Dependent Surface-Enhanced Raman Scattering and the Kinetic Behavior of Methylene Blue Adsorbed on Silver Oxide Nanocrystals. Langmuir, 2016. 32(40): p. 10184-10188.
    165. Prakash, J., V. Kumar, R.E. Kroon, K. Asokan, V. Rigato, K.H. Chae, S. Gautam, and H.C. Swart, Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix. Physical Chemistry Chemical Physics, 2016. 18(4): p. 2468-2480.
    166. Tian, L., S. Tadepalli, M.E. Farrell, K.-K. Liu, N. Gandra, P.M. Pellegrino, and S. Singamaneni, Multiplexed charge-selective surface enhanced Raman scattering based on plasmonic calligraphy. Journal of Materials Chemistry C, 2014. 2(27): p. 5438-5446.
    167. Le Ru, E.C., E. Blackie, M. Meyer, and P.G. Etchegoin, Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    168. Pavel, I.E., K.S. Alnajjar, J.L. Monahan, A. Stahler, N.E. Hunter, K.M. Weaver, J.D. Baker, A.J. Meyerhoefer, and D.A. Dolson, Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment. Journal of Chemical Education, 2012. 89(2): p. 286-290.
    169. Cintă Pinzaru, S., C. Müller, S. Tomšić, M.M. Venter, B.I. Cozar, and B. Glamuzina, New SERS feature of β-carotene: consequences for quantitative SERS analysis. Journal of Raman Spectroscopy, 2015. 46(7): p. 597-604.
    170. He, Y., X. Han, D. Chen, L. Kang, W. Jin, R. Qiang, P. Xu, and Y. Du, Chemical deposition of Ag nanostructures on polypyrrole films as active SERS substrates. RSC Advances, 2014. 4(14): p. 7202-7206.
    171. Wu, M.-C., M.-P. Lin, S.-W. Chen, P.-H. Lee, J.-H. Li, and W.-F. Su, Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection. RSC Advances, 2014. 4(20): p. 10043-10050.
    172. Tan, X., L. Wang, C. Cheng, X. Yan, B. Shen, and J. Zhang, Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chemical Communications, 2016. 52(14): p. 2893-2896.
    173. Srichan, C., M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate. Scientific Reports, 2016. 6: p. 23733.
    174. Nuntawong, N., M. Horprathum, P. Eiamchai, K. Wong-ek, V. Patthanasettakul, and P. Chindaudom, Surface-enhanced Raman scattering substrate of silver nanoparticles depositing on AAO template fabricated by magnetron sputtering. Vacuum, 2010. 84(12): p. 1415-1418.

    無法下載圖示 全文公開日期 2023/03/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE