簡易檢索 / 詳目顯示

研究生: 許涵茹
Han-Ju Hsu
論文名稱: 以紫膜光電生物感測器探討朝鮮薊萃取物與精油之抑菌性
Antibacterial study of artichoke extracts and essential oils using purple membrane-based photoelectric biosensors
指導教授: 陳秀美
Hsiu-mei Chen
口試委員: 董崇民
葉旻鑫
廖國宸
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 159
中文關鍵詞: 細菌視紫質生物感測器朝鮮薊
外文關鍵詞: bacteriorhodopsin, biosensor, artichoke
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 朝鮮薊萃取物具有保肝利膽、抗癌、抗氧化、抗菌等功能,因此常用應用於保健食品及藥物上。紫膜 (purple membrane, PM) 中含有具光敏性細菌視紫質(bacteriorhodopsin) 膜蛋白,受到光激發後可用以產生光電流,因此可作為光電訊號轉換器。本論文使用先前實驗室已開發以 PM 為光電訊號轉換器且可分別偵測真菌、革蘭氏陽性菌與革蘭氏陰性菌之生物感測器,對朝鮮薊萃取物的抑菌特性進行探討;檢測對象包含牙斑菌以及另外2 株真菌、2 株革蘭氏陽性菌與3 株革蘭氏陰性菌。以 10 CFU/mL 菌濃度做為抑菌實驗的初始濃度,並在培養基中分別加入 4 種不同濃度的朝鮮薊酒水萃液與水萃液,以及 6 種不同精油,觀察6、12、28與24小時不同培養時間後的菌濃度。菌濃度分別以上述三種不同的 PM 光電感測晶片量測,並同時與傳統的光譜分析法進行比對。以晶片量測結果發現,在兩種朝鮮薊萃取物的結果中顯示出朝鮮薊酒水萃液比水萃液的抑菌效果來的好。含有朝鮮薊酒水萃液、牛至精油與茶樹精油之組合對牙斑菌具有最佳的抑菌效果;於培養 6與24 小時後,抑菌比例可分別達 96.1% 與 99.7%。其次,對於朝鮮薊水萃液,在含有牛至精油與茶樹精油之組合下,對牙斑菌於培養 6與24 小時後,抑菌比例可分別達 96.3% 與99.6%。此外,對於另外 2株真菌、2株革蘭氏陽性菌與3株革蘭氏陰性菌,在相同朝鮮薊酒水萃與精油的組合下,均有類似的抑菌效果,而與 4 種市售漱口水相比,也均有良好的抑菌效果。傳統光譜分析法在本研究中無法測得培養 6 小時的菌濃度,需培養 24 小時後才可量測到,我們可以藉由 PM 晶片高靈敏度的特性來測得較低的菌濃度。本研究顯示以 PM 為光電訊號轉換器的微生物感測器可取代傳統分析方法,更快速與準確地探討組合溶液的抑菌效果。


    Artichoke extracts, a nutritional supplement and potential medicine, have antibacterial, anti-cancer, antioxidant, liver-protection, and choleretic functions. Purple membrane (PM) containing photoactive bacteriorhodopsin can be used to generate photocurrents under illumination; therefore, it can be applied as the photoelectric signal transducer of a biosensor. In this study, the antibacterial effect of artichoke extracts is undertaken by using 3 different photoelectric biosensors targeting fungi, Gram-positive bacteria and Gram-negative bacteria, respectively, which have been previously developed in this laboratory using PM as the transducer. Streptococcus mutans along with 2 fungus, 2 other Gram-positive, and 3 Gram-negative bacterial strains are the assay targets, with 10 CFU/mL as the inoculum concentration. Alcoholic-aqueous and aqueous extracts of artichoke as well as 6 different essential oils, all at 4 different concentrations, are added to the growth medium. Then, aliquots of cell cultures are sampled at 6, 12, 18, and 24-h incubation to measure the cell concentrations using the above-mentioned 3 different PM-based biosensors and the traditional spectrophotometry method, respectively. By biosensors, the result in two kinds of artichoke extracts shows that alcoholic-aqueous extract of artichoke has better antibacterial effect than aqueous extract. A mixture containing the alcoholic-aqueous extract of artichoke, oregano essential oil, and tea-tree essential oil is found to exhibit the best antibacterial effect against S. mutans, with the antibacterial efficiencies of 96.1% and 99.7% after the 6- and 24-h incubation, respectively. For, the artichoke aqueous extract, the mixture with the addition of oregano essential oil, and tea-tree essential oil also yields the best antibacterial effect against S. mutans, with the antibacterial efficiencies of 96.3% and 99.6% after the 6- and 24-h incubation, respectively. Against the 2 fungus, 2 other Gram-positive, and 3 Gram-negative bacterial strains, the mixture containing the alcoholic-aqueous extract of artichoke, oregano essential oil, and tea-tree essential oil shows a similar antibacterial effect as against S. mutans. Compared with 4 kinds of commercial mouthwashes, the mixture also shows a similar antibacterial effect as against S. mutans. In this study, the traditional spectrophotometry method fails to determine the cell concentrations of any 6-h cultures and results in hardly satisfactory data only for the 24-h cultures. Therefore, we can get the lower cell concentration data by the higher sensitive PM-based biosensors. This study demonstrates that the PM-based biosensors are promising alternatives to the traditional spectrophotometry method to investigate the effects of bacteriostats in a faster and more accurate way.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 XII 第一章 緒論 26 第二章 文獻回顧 28 2-1 朝鮮薊 (Artichoke) 28 2-1-1 朝鮮薊簡介 28 2-1-2 朝鮮薊的功效與應用 29 2-2 朝鮮薊成分介紹 30 2-2-1 植化素 (Phytochemicals) 30 2-2-2 洋薊酸 (Cynarin) 與綠原酸 (Chlorogenic acid) 31 2-2-3 類黃酮類化合物 (Flavonoids) 32 2-2-4 朝鮮薊的酒萃與水萃 33 2-3 精油功效 34 2-4 常見的抑菌檢測方式 35 2-4-1 肉湯稀釋檢測法 (Broth dilution method) 35 2-4-2 瓊脂稀釋檢測法 (Agar dilution method) 36 2-4-3 紙錠擴散檢測法 (Disk diffusion method) 37 2-5 細菌視紫質 (Bacteriorhodopsin, BR) 37 2-5-1 Halobacterium salinarum 與 BR 簡介 37 2-5-2 BR 結構 38 2-5-3 BR 光循環路徑 39 2-5-4 BR 光電響應 41 2-5-5 PM 之單層貼覆及固定化 45 2-8-6 PM 晶片的微生物檢測應用 47 第三章 實驗 49 3-1 實驗目的與說明 49 3-2 量測 50 3-2-1 Cuvette 系統之D1、D2 微分光電流量測 50 第四章 結果與討論 51 4-1 以靜態檢測方式探討朝鮮薊萃取物對 8 株菌之抑菌效果 51 4-1-1 朝鮮薊酒水萃萃取物對 8 株菌之抑菌效果 51 4-1-2 朝鮮薊水萃萃取物對 8 株菌之抑菌效果 68 4-1-3 朝鮮薊水萃與酒水萃萃取物對 8 株菌之抑菌效果比較 85 4-2 以靜態檢測方式探討 6 款精油對牙斑菌之抑菌效果 91 4-3 以靜態檢測方式探討中低濃度牛至及茶樹精油與中低及中濃度洋薊酒水萃及水萃萃取物混和後對於牙斑菌之抑菌效果 107 4-4 以靜態檢測方式探討最佳組合 (中低濃度牛至 + 中低濃度茶樹 + 中濃度洋薊酒水萃液) 對於 7 株菌在抑菌能力上的加成效果 119 4-5 以靜態檢測方式探討 4 款市售漱口水作為對照組與朝鮮薊酒水萃/水萃萃取物以及精油與朝鮮薊酒水萃/水萃萃取物混和後對於牙斑菌之抑菌效果比較 133 第五章 結論 146 第六章 參考文獻 148 第七章 附錄 155 7-1 漱口水資料 155 7-1-1 李施德霖漱口水 155 7-1-2 德恩奈漱口水 155 7-1-3 棉花田漱口水 156 7-1-4 高露潔漱口水 156 7-2 真菌、革蘭氏陽性菌、革蘭氏陰性菌之檢量線 157 7-2-1 真菌檢量線 157 7-2-2 革蘭氏陽性菌檢量線 157 7-2-3 革蘭氏陰性菌檢量線 158

    Alghazeer RO, El-Saltani H, A. Saleh N, Al-Najjar A, B. Naili M, Hebail F and El-Deeb H. Antioxidant and Antimicrobial Activities of Cynara scolymus L. Rhizomes. Modern Applied Science. 2012, 6(7).

    Anna Maria Mileo DDV, Stefania Miccadei. Antitumour effects of artichoke polyphenols: cell death and ROS-mediated epigenetic growth arrest. Stem Cell Epigenetics. 2016.

    Chen HM, Jheng KR and Yu AD. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosens Bioelectron. 2017, 91:24-31.

    Chen HM, Lin CJ, Jheng KR, Kosasih A and Chang JY. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf B Biointerfaces. 2014, 116:482-488.

    Chu L-K, Yen C-W and El-Sayed MA. Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics. 2010, 26(2):620-626.

    Cushnie TP and Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005, 26(5):343-356.

    Cushnie TP and Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011, 38(2):99-107.

    Cora J Dillard and J Bruce German. Phytochemicals nutraceuticals and human health. Journal of the Science of Food and Agriculture. 2000, 80:1744±1756.

    Gostin A-I and Waisundara VY. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends in Food Science & Technology. 2019, 86:381-391.

    Hampp N. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. Chemical Reviews. 2000, 100(1):1755−1776.

    Hirai T and Subramaniam S. Structural insights into the mechanism of proton pumping by bacteriorhodopsin. FEBS Letters. 2003, 545(1):2-8.

    Holmer I, Salomonsen CM, Jorsal SE, Astrup LB, Jensen VF, Hog BB and Pedersen K. Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet Res. 2019, 15(1):449.

    Jian-Ping Wang S-KY, Li Song, and Mostafa A. El-Sayed. Molecular Mechanism of the Differential Photoelectric Response of Bacteriorhodopsin. The Journal of Physical Chemistry B. 1997, 101:4.

    K Osawa HY, T Maruyama, H Morita, K Takeya, H Itokawa. Isoflavanones from the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria. Chem Pharm Bull (Tokyo). 1992, 40(11):2970-2974.

    Kawanabe A and Kandori H. Photoreactions and structural changes of anabaena sensory rhodopsin. Sensors (Basel). 2009, 9(12):9741-9804.

    Lattanzio V, Kroon PA, Linsalata V and Cardinali A. Globe artichoke: A functional food and source of nutraceutical ingredients. Journal of Functional Foods. 2009, 1(2):131-144.

    Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B and Huang XM. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016, 100(20):8865-8875.

    Li YT, Tian Y, Tian H, Tu T, Gou GY, Wang Q, Qiao YC, Yang Y and Ren TL. A Review on Bacteriorhodopsin-Based Bioelectronic Devices. Sensors (Basel). 2018, 18(5).

    Lou Z, Wang H, Zhu S, Ma C and Wang Z. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci. 2011, 76(6):398-403.

    Miccadei S, Di Venere D, Cardinali A, Romano F, Durazzo A, Foddai MS, Fraioli R, Mobarhan S and Maiani G. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr Cancer. 2008, 60(2):276-283.

    Rodriguez-Garcia, Silva-Espinoza BA, Ortega-Ramirez LA, Leyva JM, Siddiqui MW, Cruz-Valenzuela MR, Gonzalez-Aguilar GA and Ayala-Zavala JF. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit Rev Food Sci Nutr. 2016, 56(10):1717-1727.

    Sandle T. Antibiotics and preservatives. Pharmaceutical Microbiology. 2016, 171-183.

    Seow YX, Yeo CR, Chung HL and Yuk HG. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr. 2014, 54(5):625-644.

    Singh P, Singh S, Jaggi N, Kim K-H and Devi P. Recent advances in bacteriorhodopsin-based energy harvesters and sensing devices. Nano Energy. 2021, 79.

    Tang X, Wei R, Deng A and Lei T. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice. Nutrients. 2017, 9(9).

    Tungmunnithum D, Thongboonyou A, Pholboon A and Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel). 2018, 5(3).

    Vamanu E, Vamanu A, Nita S and Colceriu S. Antioxidant and Antimicrobial Activities of Ethanol Extracts of Cynara Scolymus (Cynarae folium, Asteraceae Family). Tropical Journal of Pharmaceutical Research. 2011, 10(6).

    Wang J. Vectorially oriented purple membrane: Characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy. Thin Solid Films. 2000, 379(1-2):224-229.

    Xie Y, Yang W, Tang F, Chen X and Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015, 22(1):132-149.

    Ben Salem M, H Affes, K Ksouda, R Dhouibi, Z Sahnoun, S Hammami and KM Zeghal. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum Nutr. 2015, 70(4):441-453.

    Chen HM, KR Jheng and AD Yu. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosens Bioelectron. 2017, 91:24-31.

    Chen HM, CJ Lin, KR Jheng, A Kosasih and JY Chang. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf B Biointerfaces. 2014, 116:482-488.

    Chu L-K, C-W Yen and MA El-Sayed. Bacteriorhodopsin-based photo-electrochemical cell. Biosensors and Bioelectronics. 2010, 26(2):620-626.

    Elieh Ali Komi D, L Sharma and CS Dela Cruz. Chitin and Its Effects on Inflammatory and Immune Responses. Clin Rev Allergy Immunol. 2018, 54(2):213-223.

    Farhadi F, B Khameneh, M Iranshahi and M Iranshahy. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res. 2019, 33(1):13-40.

    Gostin A-I and VY Waisundara. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends in Food Science & Technology. 2019, 86:381-391.

    Hampp N. Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. Chemical Reviews. 2000, 100(1):1755−1776.

    Hirai T and S Subramaniam. Structural insights into the mechanism of proton pumping by bacteriorhodopsin. FEBS Letters. 2003, 545(1):2-8.

    Jian-Ping Wang S-KY, Li Song, and Mostafa A. El-Sayed. Molecular Mechanism of the Differential Photoelectric Response of Bacteriorhodopsin. The Journal of Physical Chemistry B. 1997, 101:4.

    Kawanabe A and H Kandori. Photoreactions and structural changes of anabaena sensory rhodopsin. Sensors (Basel). 2009, 9(12):9741-9804.

    Li YT, Y Tian, H Tian, T Tu, GY Gou, Q Wang, YC Qiao, Y Yang and TL Ren. A Review on Bacteriorhodopsin-Based Bioelectronic Devices. Sensors (Basel). 2018, 18(5).

    Lou Z, H Wang, S Zhu, C Ma and Z Wang. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci. 2011, 76(6):398-403.

    Rodriguez-Garcia I, BA Silva-Espinoza, LA Ortega-Ramirez, JM Leyva, MW Siddiqui, MR Cruz-Valenzuela, GA Gonzalez-Aguilar and JF Ayala-Zavala. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit Rev Food Sci Nutr. 2016, 56(10):1717-1727.

    Seow YX, CR Yeo, HL Chung and HG Yuk. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr. 2014, 54(5):625-644.

    Singh P, S Singh, N Jaggi, K-H Kim and P Devi. Recent advances in bacteriorhodopsin-based energy harvesters and sensing devices. Nano Energy. 2021, 79.

    Tang X, R Wei, A Deng and T Lei. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice. Nutrients. 2017, 9(9).

    Tungmunnithum D, A Thongboonyou, A Pholboon and A Yangsabai. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel). 2018, 5(3).

    Vamanu E, A Vamanu, S Nita and S Colceriu. Antioxidant and Antimicrobial Activities of Ethanol Extracts of Cynara Scolymus (Cynarae folium, Asteraceae Family). Tropical Journal of Pharmaceutical Research. 2011, 10(6).

    Wang J. Vectorially oriented purple membrane: Characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy. Thin Solid Films. 2000, 379(1-2):224-229.

    Xie Y, W Yang, F Tang, X Chen and L Ren. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. 2015, 22(1):132-149.

    賴銀德,檢測真菌、革蘭氏陽性菌與陰性菌之紫膜生物光電晶片開發,國立臺灣科技大學化學工程研究所碩士論文,2019

    廖清德,紫膜生物光電晶片於朝鮮薊抑菌研究之應用,國立臺灣科技大學化學工程研究所碩士論文,2021

    無法下載圖示 全文公開日期 2027/02/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE