簡易檢索 / 詳目顯示

研究生: 陳威良
Wei-Liang Chen
論文名稱: 單靶濺鍍及硒化所製備硒化銅鋅錫薄膜及其無鎘太陽能電池元件研究
Preparation and Characteristics of Cd-free Cu2ZnSnSe4 thin-film solar cells with the absorber made with Cu-Zn-Sn target sputtering and selenization
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 魏茂國
Mao-Kuo Wei
何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
郭東昊
Dong-Hau Kuo
柯文政
Wen-Cheng Ke
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 104
中文關鍵詞: 硒化銅鋅錫薄膜太陽能電池真空濺鍍法
外文關鍵詞: Cu2ZnSnSe4, thin-film solar cells, sputtering
相關次數: 點閱:200下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地以真空濺鍍法及硒化退火製備硒化銅鋅錫(CZTSe)吸收層薄膜,並以三種不同的n型薄膜層製備出CZTSe薄膜太陽能電池。首先以銅-鋅-錫金屬靶材進行真空濺鍍CZT薄膜於鍍鉬的鈉玻璃基板上,接著進行不同條件之硒化退火獲得p型的CZTSe吸收層薄膜。再以三種不同n型半導體層來製作薄膜太陽能電池元件,三種n層堆疊,分別為n-ZnO/CdS/p-CZTSe、n-In0.15Ga0.85N/n-GaN/p-CZTSe與 n-In0.15Ga0.85N/n-In0.3Ga0.7N/p-CZTSe,後兩種元件為無鎘的薄膜太陽能電池元件,係使用III族氮化物薄膜取代ZnO/CdS。
    研究中利用X光繞射分析儀(XRD)、場發射掃描式電子顯微鏡(FE-SEM)、能量散射光譜儀(EDS)與霍爾量測等儀器來分析薄膜特性,並以擬太陽能光測試儀器測試各CZTSe薄膜太陽能電池元件之光電轉換效率。由XRD及EDS分析確認由(Cu0.7Zn0.5Sn0.45)靶材再經600 oC硒化所得CZTSe吸收層為單相結構,且為缺銅富鋅組成,由FE-SEM確認CZTSe形態平整。
    n-In0.15Ga0.85N/n-In0.3Ga0.7N/p-CZTSe/TiN/Mo/Glass無鎘薄膜太陽能電池元件的效率由傳統製程之1.1%提升至4.2%,其最佳電流密度約為48 mA/cm2,開路電壓約0.34 V,FF為27.1 %。


    Cu2ZnSnSe4 (CZTSe) films for thin-film solar cell devices were fabricated by sputtering with a Cu-Zn-Sn metal target and followed by two-steps post-selenization at 500–600 °C for 1 h in the presence of single or double compensation discs to supply Se vapor. After that, two kinds of n-type III-nitride bilayers were prepared by radio frequency sputtering for the CdS-free CZTSe thin film solar cell devices: In0.15Ga0.85N/GaN/CZTSe and In0.15Ga0.85N/In0.3Ga0.7N/CZTSe. Three kinds of CZTSe films were prepared by using three kinds of Cu-Zn-Sn targets with different Zn contents. The structure, morphology, composition, electrical properties of p-type CZTSe films were characterized with X-ray diffractometry, field-emission scanning electron microscopy, energy dispersion diffractometry, and Hall effect measurement. CZTSe films obtained from sputtering the (Cu0.7Zn0.5Sn0.45) target followed with the 600 oC selenization showed the Cu-deficient and Zn-rich composition and smooth surface morphology.
    With the CdS-free a new solar cell design, the solar cell device with the structure of In0.15Ga0.85N/In0.3Ga0.7N/CZTSe had improved efficiency of 4.2%, as compared with 1.1% for the conventional design with the n-type conventional ZnO/CdS bilayer. This Cd-free cell device had current density of ~48 mA/cm2, the maximum open-circuit voltage of 0.34 V, and fill factor of 27.1%. The 3.8-fold increase in conversion efficiency for the CZTSe thin film solar cell devices by replacing n-type ZnO/CdS with the III-nitride bilayer proves the sputtered III-nitride films have their merits.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIV 第一章 序論 1 1-1前言 1 1-2 太陽能電池種類 2 1-3 薄膜太陽能電池 3 1-3-1矽薄膜太陽能電池 3 1-3-2 碲化鎘薄膜太陽能電池 4 1-3-3 硒化銅銦鎵薄膜太陽能電池 5 1-3-4 硒化銅錫鋅薄膜太陽能電池 5 1-4 研究動機與目的 6 第二章 基礎理論與文獻回顧 8 2-1太陽能電池工作原理 8 2-2 CZTSe薄膜太陽能電池之基本構造及介紹 8 2-2-1 基板 9 2-2-2 底電極 9 2-2-3 吸收層 10 2-2-4 緩衝層 25 2-2-4 窗口層 25 2-2-5 透明導電層 25 2-2-6 上電極 26 第三章 實驗步驟與相關儀器 27 3-1 實驗設備 27 3-1-1 熱壓機 27 3-1-2超音波洗淨器 27 3-1-3 直流濺鍍系統 28 3-1-4 射頻濺鍍系統 29 3-1-5 高溫管型爐 30 3-1-6 化學浴相關儀器 31 3-2 實驗材料、基板及氣體 32 3-3 實驗流程 33 3-3-1 靶材粉末配置 34 3-3-2 熱壓CZT靶材 35 3-3-3 基板清洗 35 3-3-4 鍍鉬及氮化鈦 37 3-3-5 CZT薄膜濺鍍 39 3-3-6 CZT薄膜硒化退火 40 3-3-7 元件製備 40 3-3-8 薄膜及元件分析 43 3-4分析儀器介紹及量測參數 44 3-4-1高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 44 3-4-2能量分散光譜儀 (Energy Dispersive Spectroscope, EDS) 44 3-4-3 X光繞射分析儀 (X-ray Diffractometer, XRD) 45 3-4-4 霍爾效應量測系統 (Hall Effect Measurement Systems) 45 3-4-5 太陽光能模擬器與電流-電壓量測系統 (Solar Simulator and I-V Measurement System) 46 第四章 結果與討論 47 4-1 CZTSe吸收層 47 4-1-1 CZTSe吸收層表面形態及EDS成份分析 47 4-1-2 CZTSe吸收層XRD分析 58 4-1-3 靶材2經濺鍍與硒化所得CZTSe吸收層其電性量測分析 59 4-1-4 不同Sb2S3添加量的靶材濺鍍CZT與CZTSe吸收層其表面形態及EDS成份分析 61 4-1-5 靶材5經濺鍍與硒化後所得CZTSe吸收層電性量測分析 69 4-2 電池的製備與分析 71 4-2-1 擬太陽光測試 71 第五章 結論 77 參考文獻 81

    [1] 聯合國氣候變化綱要公約的京都議定書。Retrieved July 22, 2018, from http://www.tri.org.tw/unfccc/download/kp_c.pdf
    [2] 楊德仁 (2008)。太陽能電池材料。高雄:五南出版
    [3] B. H. An, L. Orabi, J. S. Lee, M. S. Mansour, M. A. Mansoori, Y. K. Kim, Electrochemical synthesis of CuIn(1-x)GaxSe2 nanowires with controlled stoichiometry, Mater. Lett. 211 (2018) 149–152.
    [4] Z. Fang, X. C. Wang, H. C. Wu, C. Z. Zhao, Achievements and challenges of CdS/CdTe solar cells, Int. J. Photoenergy 2011 (2011) Article ID 297350.
    [5] M. Acciarri, A. L. Donne, S. Marchionna, M. Meschia, J. Parravicini, A. Gasparotto, S. Binetti, CIGS thin films grown by hybrid sputtering-evaporation method: Properties and PV performance, Sol. Energy, available online 19 February 2018, DOI: 10.1016/j.solener.2018.02.024.
    [6] S. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, S. H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells, Phys. Rev. B 83 (2011) 125201.
    [7] R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir, K. H. Kim, Calculation of the lattice dyna mics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments, J. Appl. Phys. 111 (2012) 083707.

    [8] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films 517 (2009) 2455–2460.
    [9] K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, H. Katagiri, Cu2ZnSnS4-type thin film solar cells using abundant materials, Thin Solid Films 515 (2007) 5997–5999.
    [10] W.G. Adams, R.E. Day, The action of light on selenium, Proc. R. Soc. A25 (1877) 113–117.
    [11] N. Song, M. Young, F. Liu, P. Erslev, S. Wilson, S. P. Harvey, G. Teeter, Y. Huang, X. Hao, M. A. Green, Epitaxial Cu2ZnSnS4 thin film on Si (111) 4° substrate, Appl. Phys. Lett. 106, (2015) 252102.
    [12] K. Timmo, M. Altosaar, J. Raudoja, K. Muska, M. Pilvet, M. Kauk, T. Varema, M. Danilson, O. Volobujeva, E. Mellikov, Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells, Sol. Energ. Mat. Sol. C. 94 (2010) 1889–1892.
    [13] K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B.Mitzi, S.Guha, structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells, Appl. Phys. Lett. 98 (2012) 051912.
    [14] A. R. Jeong, W. Jo, S. Jung, J. Gwak, J. H. Yun, Enhanced exciton separation through negative energy band bending at grain boundaries of Cu2ZnSnSe4 thin-films, Appl. Phys. Lett. 99 (2011) 082103.
    [15] T. Prabhakar, N. Jampana, Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films, Sol. Energ. Mat. Sol. C. 95 (2011) 1001–1004.
    [16] C. Platzer-Björkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells, Sol. Energ. Mat. Sol. C. 98 (2012) 110–117.
    [17] A. S. Opanasyuk, D. I. Kurbatov, M. M. Ivashchenko, I. Yu. Protsenko, H. Cheong, Properties of the window layers for the CZTSe and CZTS based solar cells, J. Nano- Electron. Phys. 4 (2012) 01024.
    [18] A. Redinger, D. M. Berg, P. J. Dale, R. Djemour, L. Gütay, T. Eisenbarth, N. Valle, S. Siebentritt, Route toward high-efficiency single-phase Cu2ZnSn(S,Se)4 thin-film solar cells: model experiments and literature review, IEEE J. Photovolt. 1 (2011) 200–206.
    [19] J. Ge, S. Zuo, J. Jiang, J. Ma, L. Yang, P. Yang, J. Chu, “ Investigation of Se supply for the growth of Cu2ZnSn(SxSe1−x)4 (x ≈ 0.02–0.05) thin films for photovoltaics ” Appl. Surf. Sci. 258 (2012) 7844–7848.
    [20] T. Tinoco, C. Rincón, M. Quintero, G. Sánchez Pérez, Phase diagram and optical energy gaps for CuInyGa1−ySe2 alloys, Phys. Status Solidi A 124 (1991) 427–434.
    [21] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%, Phys. Status Solidi (RRL) 10 (2016) 583–586.
    [22] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi (RRL) 9 (2015) 28–31.
    [23] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor, Prog. Photovoltaics 16 (2008) 235–239.
    [24] X. Peng, M. Zhao, D. Zhuang, R. Sun, L. Zhang, Y. Wei, X. Lv, Y. Wu, G. Ren, Ga2Se3 treatment of Cu-rich CIGS thin films to fabricate Cu-poor CIGS thin films with large grains and U-shaped Ga distribution, Vacuum 152 (2018) 184–187.
    [25] S. Teraji, J. Chantana, T. Watanabe, T. Minemoto, Development of flexible Cd-free Cu(In,Ga)Se2 solar cell on stainless steel substrate through multi-layer precursor method, J. Alloy. Compd. 756 (2018) 111–116.
    [26] A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, E. S. Aydil, Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments J. Appl. Phys. 111 (2012) 083707.
    [27] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors, Prog. Photovoltaics 17 (2009) 315–319.
    [28] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, J. H. Yun, Band gap determination of Cu2ZnSnSe4 thin films, IEEE Phot. Spec. Conf. (2010) 1894–1986.
    [29] A. Shavel, J. Arbiol, A. Cabot, Synthesis of quaternary chalcogenide nanocrystals: stannite Cu2ZnxSnySe1+x+2y, J. Am. Chem. Soc. 132 (2010) 4514–4515.
    [30] G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar, S. R. Vanjari, Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films, Sol. Energ. Mat. Sol. C. 94 (2010) 221–226.
    [31] A. Redinger, S. Siebentritt, Coevaporation of Cu2ZnSnSe4 thin films, Appl. Phys. Lett. 97 (2010) 092111.
    [32] A.Weber, H. Krauth, S. Perlta, B. Schubert, I. Kötschau, S. Schorr, H. W. Schock, Multi-stage evaporation of Cu2ZnSnS4 thin films, Thin Solid Films 517 (2009) 2524–2526.
    [33] Y. Z. Li, X. D. Gao, C. Yang, F. Q. Huang, The effects of sputtering power on optical and electrical properties of copper selenide thin films deposited by magnetron sputtering, J. Alloy Compd. 505 (2010) 623–627.
    [34] F. Liu, K. Zhang, Y. Laiz, J. Li, Z. Zhang, Y. Liu, Growth and characterization of Cu2ZnSnS4 thin films by DC reactive magnetron sputtering for photovoltaic applications, Electrochem. Solid St. 13 (2010) H379–H381.
    [35] F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, Y. Liu, In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering, Sol. Energ. Mat. Sol. C. 94 (2010) 2431–2434.
    [36] R. Juškėnas, S. Kanapeckaitė, V. Karpavičienė, Z. Mockus, V. Pakštas, A. Selskienė, R. Giraitis, G. Niaura, A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells, Sol. Energ. Mat. Sol. C. 101 (2012) 277–282.
    [37] H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors, Sol. Energ. Mat. Sol. C. 93 (2009) 996–999.
    [38] C. P. Chan, H. Lam, C. Surya, Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids, Sol. Energ. Mat. Sol. C. 94 (2010) 207–211.
    [39] Q. Guo, H. W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, J. Am. Chem. Soc. 131 (2009) 11672–11673.
    [40] N. Momose, M. T. Htay, T. Yudasaka, S. Igarashi, T. Seki, S. Iwano, Y. Hashimoto, K. Ito, Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets, Jpn. J. Appl. Phys. 50 (2011) 01BG09.
    [41] B. A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H. W. Schock, Cu2ZnSnS4 thin film solar cells by fast coevaporation, Prog. Photovoltaics 19 (2011) 93–96.
    [42] J. He, X. Lu, X. Li, Y. Dong, F. Yue, Y. Chen, L. Sun,P. Yang, J. Chu, Compositional dependence of photovoltaic properties of Cu2ZnSnSe4 thin film solar cell: Experiment and simulation, Sol. Energy 159 (2018) 572–578.
    [43] W. C. Chen, V. Tunuguntla, H. W. Li, C. Y. Chen, S. S. Li, J. S. Hwang, C. H. Lee, L. C. Chen, K. H. Chen, Fabrication of Cu2ZnSnSe4 solar cells through multi-step selenization of layered metallic precursor film, Thin Solid Films 618 (2016) 42–49.
    [44] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, R. Noufi, Co-evaporated Cu2ZnSnSe4 films and devices, Sol. Energ. Mat. Sol. C. 101 (2012) 154–159.
    [45] Y. C. Lin, L. C. Wang, K. T. Liu, Y. R. Syu, H. R. Hsu, A comparative investigation of secondary phases and MoSe2 in Cu2ZnSnSe4 solar cells: Effect of Zn/Sn ratio, J. Alloy Compd. 743 (2018) 249–257.
    [46] Y. C. Lin, C. M. Lai, H. R. Hsu, Impact of sodium on the secondary phases and current pathway in Cu2(Zn,Sn)Se4 thin film solar cell, Mater. Chem. Phys. 192 (2017) 131–137.

    QR CODE