簡易檢索 / 詳目顯示

研究生: 毛雅儀
Ya-Yi Mao
論文名稱: 具不同尺寸奈米圖騰藍寶石基板對於可見光光觸媒氧化鉍之影響
Effect of Nanometer Oxide on the Photocatalytic Properties of Sapphire Substrate with Porous Anodic Aluminum Oxide Film
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 曾堯宣
Yao-Hsuan Tseng
陳建仲
CHIEN-CHON CHEN
陳柏均
Po-Chun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 藍寶石基板奈米圖騰射頻磁控濺鍍法陽極氧化處理奈米光觸媒氧化鉍光學特性光催化效應
外文關鍵詞: Sapphire, Nanopattern, RF magnetron sputtering, anodizing, anodic aluminum oxide, bismuth oxide, optical properties, photocatalytic effect
相關次數: 點閱:414下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所採用的基板為藍寶石,將其經由表面處理後,使基板表面具有奈米圖騰化,再與可見光光觸媒氧化鉍作結合,而此奈米圖騰能將氧化鉍奈米化達到提升光催化效果,且對於未來藍寶石基板在光學應用上,除了能保有基板透光性也能達到除汙、抗菌等光觸媒之效果。首先,在表面處理過程中,我們利用射頻濺鍍機,在藍寶石基板上獲得良好的附著性及表面平坦的純鋁薄膜,並透過陽極處理,得到具有奈米孔洞陣列結構之陽極氧化鋁薄膜(AAO)的藍寶石基板,接著再以不同濺鍍時間,將金屬鉍與具有AAO複合膜的藍寶石基板作結合,為了使金屬鉍具有光催化效果,利用高溫爐將其氧化成氧化鉍(Bi2O3)。由於,具有奈米孔洞陣列結構之藍寶石基板,使得氧化鉍的比表面積增加,當氧化鉍光觸媒受到光能照射後,產生更多電子電洞對,能誘發更佳化之光催化效果。實驗結果分析中,利用場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM),觀察複合層基板之微觀結構變化;再利用紫外光-可見光光譜儀(UV-VIS)測得經由表面處理藍寶石基板的透光度;且將試片放入甲基橙降解液中,由降解濃度變化可知,具較大尺寸奈米圖騰之複合藍寶石基板,其光催化效果較佳,並且保有一定的可見光穿透率,預期未來具有應用在日常生活中的潛力。


    In this study, we used the sapphire substrate with nanopattern to nanonize the photocatalyst bismuth oxide, and achieved the purpose of improving the photocatalytic effect of the Bi2O3. We expected that the sapphire will be used in optical applications in the future, it can maintain the transmittance of the sapphire also achieve the effects of photocatalyst. First, in the surface treatment process, we used the Radio Frequency sputter to obtain the aluminum film with good adhesion and flat surface on the sapphire substrate. And through anodizing, the substrate with anodized aluminum oxide (AAO) film with a nano-hole array structure was obtained, and we set the different sputtering time, the bismuth particle was combined with the sapphire substrate with the AAO composite film. In order to make the Bi particle had the better photocatalytic effect, it was oxidized into Bi2O3 using a high-temperature furnace. Increasing the specific surface area of Bi2O3 because of the sapphire substrate had the nanostructure. More electron-hole pairs were generated which could induce a better photocatalytic effect when the Bi2O3 photocatalyst was irradiated with light energy. In the analysis, the Field Emission Scanning Electron Microscope (FE-SEM) was used to observe the microstructure of the composite layer substrate. And then, we used the Ultraviolet–visible spectroscopy (UV-VIS) to measure the transmittance of composite layer sapphire substrate. Finally, we put sample into the degradation solution which was methyl orange (MO). It could be observed from the change of degradation concentration, the composite sapphire substrate with a larger size nanopattern had better photocatalytic effect and maintained the transmittance of visible light. It is expected to have the potential to be applied in daily life in the future.

    摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 第一章  序論 1 1.1  研究背景 1 1.2  研究動機與目的 1 第二章  文獻回顧 2 2.1  光觸媒 2 2.1.1 具可見光催化效能之光觸媒 2 2.1.2 常作為光觸媒受光催化降解效能之有機汙染劑 3 2.2  氧化鉍之基本結構與應用 6 2.3  藍寶石基板 10 2.4  物理氣相沉積-真空濺鍍技術 12 2.4.1 濺鍍原理 12 2.4.2 薄膜生長機制 14 2.5  陽極處理 16 2.5.1 陽極氧化鋁發展 16 2.5.2 陽極處理鋁之成長機制 17 2.6  文獻回顧之總結 21 第三章  實驗流程與步驟 22 3.1  實驗流程 22 3.1.1 基材準備 23 3.1.2 表面處理製程 23 3.2  實驗設備與參數 26 3.3  分析儀器與原理 29 3.3.1 場發射掃描式電子顯微鏡 29 3.3.2 紫外光-可見光光譜儀 30 3.3.3 多功能高功率X光繞射儀 31 第四章  結果與討論 33 4.1  鋁薄膜製備 33 4.2  奈米圖騰陽極氧化鋁薄膜製程 37 4.2.1 陽極氧化處理 37 4.2.2 表面形貌及橫截面觀察 38 4.3  金屬奈米氧化鉍製備 40 4.4  藍寶石基板光學性質之變化 43 4.4.1 外觀形貌 43 4.4.2 可見光穿透率變化 45 4.4.3 光催化效果分析 48 第五章  結論 52 第六章  未來展望 53

    【1】 S. Walheim, E. Schäffer, J. Mlynek, and U. J. S. Steiner. “Nanophase-separated polymer films as high-performance antireflection coatings.” Science 283.5401 (1999): 520-522.
    【2】 R. Mogull. “The iPhone 5s fingerprint reader: what you need to know.” Macworld. (2014).
    【3】 A.D. Paola, E. García-López, G. Marcì, L. Palmisano. “A survey of photocatalytic materials for environmental remediation.” Journal of hazardous materials 211 (2012): 3-29.
    【4】 林岳昇. “UV-LED 與奈米光觸媒自動殺菌除臭技術應用於民生用品之研究.” 碩士論文. 北台灣科學技術學院機電整合研究所. (2009).
    【5】 Z. Sen. “Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy.” Springer Science & Business Media. (2008).
    【6】 M. Grätzel. “Photoelectrochemical cells.” Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. (2011): 26-32.
    【7】 S. Rana, R. S. Srivastava, M. M. Sorensson, R. D. K. Misra. “Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system.” Materials Science and Engineering: B 119.2 (2005): 144-151.
    【8】 P. Shuk, H.D. Wiemhöfer, U Guth, W Göpel, M Greenblatt. “Oxide ion conducting solid electrolytes based on Bi2O3.” Solid State Ionics 89.3-4 (1996): 179-196.
    【9】 A. F. Gualtieri, S. Immovilli, M. Prudenziati. “Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3.” Powder Diffraction 12.2 (1997): 90-92.
    【10】 L.G. Sillén. “X-ray studies on bismuth trioxide.” Friedländer. (1937).
    【11】 H. A. Harwig. “On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-Phase.” Zeitschrift für anorganische und allgemeine Chemie 444.1 (1978): 151-166.
    【12】 Y. Bessekhouad, D. Robert, J.V. Weber. “Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions.” Catalysis Today 101.3-4 (2005): 315-321.
    【13】 M. Mehring. “Metastable β-Bi2O3 Nanoparticles with Potential for Photo-catalytic Water Purification Using Visible Light Irradiation.” ChemistryOpen 2.4 (2013): 146-155.
    【14】 C.V. Reddy, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, D.D. Dionysiou. “Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–A review.” International journal of hydrogen energy 45.36 (2020): 18331-18347.
    【15】 H. Tan, A. Gilbertson, S. Y. Chou. “Roller nanoimprint lithography.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 16.6 (1998): 3926-3928.
    【16】 陳亮羽. “藍寶石(Sapphire)晶體成長、物理特性與LED應用研究.” 北台灣科學技術學院機電整合研究所碩士論文. (2010).
    【17】 W. D. Kingery, K.B. Harvey, R. U. Donald. “Introduction to ceramics.” Vol. 17. John Wiley & Sons. (1976).
    【18】 刘江霞, 亓利剑, 曾骥良, 余海陵, 张昌龙. “桂林水热法合成黄色蓝宝石的宝石学特性研究.” 宝石和宝石学杂志. 3.1 (2001): 7-11.
    【19】 H. Liu, Y Li, W Lin, M Hong. “High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation.” Optics & Laser Technology 132 (2020): 106472.
    【20】 Masuda, Hideki, and K. Fukuda. “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina.” Science 268.5216 (1995): 1466-1468.
    【21】 蕭宏. “半導體製程技術討論.” 第三版. 全華圖書出版社. (2014).
    【22】 B. N. Chapman. “Glow Discharge processes-Sputtering and Plasma Etching.” John Wiley & Sons, New York. (1980).
    【23】 R. F. Bunshah. “Deposition Technologies for Films and Coatings.” Noyes Publications, Park Ridge, New Jersey. (1982):1-18.
    【24】 M. Ohring. “The materials science of thin films.” Applied Optics. San Diego. 31.34 (1992): 7162.
    【25】 T. Nenadović, B. Perraillon, Ž. Bogdanov, Z. Djordjević, M. Milić. “Sputtering and surface topography of oxides.” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 48.1-4 (1990): 538-543.
    【26】 C. W. Hun, C. C. Chang, S. H. Chen, C. C. Chen, A. Fang, Y. L. Kuo. “Transparent sapphire substrates with tunable optical properties by decorating with nanometric oxide on porous anodic aluminum oxide patterns.” Ceramics International 44.9 (2018): 10898-10906.
    【27】 W. D. Sproul, R. Chistyakov, B. Abraham. “Important developments in high power pulsed magnetron sputtering.” Society of Vacuum Coaters News Bulletin (2006): 35-37.
    【28】 I. Petrov, P. B. Barna, L. Hultman, J. E. Greene. “Microstructural evolution during film growth.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21.5 (2003): S117-S128.
    【29】 劉如熹, 辛嘉芬, 陳浩銘. “奈米材料的製作與應用-陽極氧化鋁膜及奈米線製作技術.” 全華圖書股份有限公司. (2008).
    【30】 S. Tajima. “Anodic oxidation of aluminum.” Advances in Corrosion Science and Technology. Springer, Boston, MA. (1970): 229-362.
    【31】 F. Keller, M. S. Hunter, D. L. Robinson. “Structural features of oxide coatings on aluminum.” Journal of the Electrochemical Society 100.9 (1953): 411-419.
    【32】 S. K. Thamida, H. C. Chang. “Nanoscale pore formation dynamics during aluminum anodization.” Chaos: An Interdisciplinary Journal of Nonlinear Science 12.1 (2002): 240-251.
    【33】 C. Hennesthal. “Application report nano wizard.” JPK Instruments AG. (2003).
    【34】 曾寶儀. “利用不同陽極處理製備之奈米氧化鋁薄膜及其微觀結構與機械性質之研究.” 國立台灣科技大學. (2018).
    【35】 C. K. Chung, M. W. Liao, O. K. Khor, H. C. Chang. “Enhancement of pore size distribution in one-step hybrid pulse anodization of aluminum thin films sputtered on Si substrates.” Thin Solid Films 544 (2013): 374-379.
    【36】 J. F. Guo, B. Ma, A. Yin, K. Fan, W. L. Dai. “Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4@ SiO2 magnetic nanoparticle under visible light irradiation.” Applied Catalysis B: Environmental 101.3-4 (2011): 580-586.

    QR CODE