簡易檢索 / 詳目顯示

研究生: 黃飛盛
Fei-Sheng Huang
論文名稱: 利用化學氣相沉積法成長二硫化鉬與二硫化鎢薄膜以及其光學特性分析
Growth of MoS2 and WS2 multilayer using Chemical Vapor Deposition and their Optical Characterization
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 李奎毅
Kuei-Yi Lee
趙良君
Liang -Chiun Chao
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 48
中文關鍵詞: 二硫化鉬二硫化鎢化學氣相沉積法過渡性金屬二為層狀半導體
外文關鍵詞: MoS2, WS2, CVD, TMDs
相關次數: 點閱:332下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文在探討利用化學氣相沉積法來成長二硫化鉬和二硫化鎢於石英和藍寶石基板上。利用拉曼散射,X射線衍射譜線,光致發光光譜和原子力顯微鏡的技術,來進行材料特性的檢測。X射線衍射譜線觀察到成長在藍寶石(0001)上的二硫化鉬有強烈的C面(002)訊號,但在較短的成長時間會有氧化鉬(002)訊號顯現。在塊材的MoS2和WS2的拉曼光譜具有兩個主要活性模式: A1g (408cm cm-1)及E12g (382 cm-1)而在WS2分別為A1g (420 cm-1和)和E12g (355 cm-1)。在E2g振動模態對應於硫原子與另一個鉬(鎢)原子的振動,而A1g模式是硫原子振動模態。在接近單層的二硫化鉬及二硫化鎢(低於五層)這兩種振動模態與厚度有強烈的相依性。在A1g和E12g位置之間差縮小的趨勢。在原子力顯微鏡圖上示成長出來的WS2呈片狀的三角形形貌,其中隨著成長時間厚度會增加。但是,在二硫化鉬並未發現這樣的行為。同時,藉由光致發光光譜量測成長在藍寶石基板上的二硫化鎢和二硫化鉬光學性質。發現到在低於五層下的樣品觀察到,二硫化鎢和二硫化鉬直接躍遷訊號分別在1.99 eV和1.85 eV。


The theme of this thesis is focused on the growth and analysis in the MoS2 and WS2 multilayer crystal on Quartz and Sapphire substrate grown by chemical vapor deposition (CVD). Detailed characterizations of the materials were carried out by using X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM), and photoluminescence (PL) techniques. XRD analysis observe that MoS2/Sapphire is of c-plane (002) and MoO3 (002) peak, while dependent by growth time. The two main active modes A1g and E2g of bulk MoS2/WS2 in Raman spectrum are 408cm-1/420cm-1 and 382cm-1/355cm-1, respectively. The E2g mode corresponds to the sulfur atoms vibrating in one direction and the Molybdenum or tungsten atom in the other, while the A1g mode is a mode of the sulfur atoms vibrating out-of-plane. When the thickness of MoS2 in multilayer (less ~five layers), these two modes becomes thickness dependent. The separation between the A1g and the E2g is smaller than that in bulk. Illustrated by AFM, shows the thickness of triangle WS2 flake increases with increasing growth time. Whereas, such growth mechanism are not observed in MoS2.The optical properties of WS2 and MoS2 grown on sapphire were also investigated by PL. The luminescence detected by (PL) indicates the transition is direct behavior with multilayer (less than five layers) thickness. The room temperature direct transition of WS2 and MoS2 were determined to be 1.99 eV and 1.85 eV.

Abstract Acknowledgements List of Figures List of Tables Chapter 1 Introduction 1.1 Introduction 1.2 Over view of thesis Chapter 2 Experimental section 2.1 Synthesis of MoS2 and WS2 by chemical vapor deposition (CVD) 2.2 Synthesis of MoS2 and WS2 by chemical vapor transport (CVT) 2.3 Characterization techniques Chapter 3 Result and discussion 3.1 Growth of MoS2 multilayer by means of CVD 3.2 Growth of WS2 multilayer by means of CVD 3.3 The photoluminescence results at micro-PL setup Chapter 4 Conclusion Reference

[1] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10451-10453, Jul 26 2005.

[2] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, "Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene," Acs Nano, vol. 7, pp. 2898-2926, Apr 2013.
[3] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.

[4] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, Nov 2012.

[5] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature Chemistry, vol. 5, pp. 263-275, Apr 2013.

[6] X. Huang, Z. Zeng, and H. Zhang, "Metal dichalcogenide nanosheets: preparation, properties and applications," Chemical Society Reviews, vol. 42, pp. 1934-1946, 2013 2013.

[7] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, "Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2," Acs Nano, vol. 7, pp. 791-797, Jan 2013.

[8] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides," Scientific Reports, vol. 3, Apr 11 2013.

[9] H. Shi, H. Pan, Y.-W. Zhang, and B. I. Yakobson, "Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2," Physical Review B, vol. 87, Apr 9 2013.

[10] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science, vol. 331, pp. 568-571, Feb 4 2011.

[11] S. Helveg, J. V. Lauritsen, E. Laegsgaard, I. Stensgaard, J. K. Norskov, B. S. Clausen, "Atomic-scale structure of single-layer MoS2 nanoclusters," Physical Review Letters, vol. 84, pp. 951-954, Jan 31 2000.

[12] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate," Small, vol. 8, pp. 966-971, Apr 10 2012.

[13] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C. Su, "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates," Nano Letters, vol. 12, pp. 1538-1544, Mar 2012.

[14] H. Liu, L. Jiao, F. Yang, Y. Cai, X. Wu, W. Ho, "Dense Network of One-Dimensional Midgap Metallic Modes in Monolayer MoSe2 and Their Spatial Undulations," Physical Review Letters, vol. 113, Aug 8 2014.

[15] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, "Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide," Nature Materials, vol. 12, pp. 554-561, Jun 2013.

[16] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, "Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers," Nature Materials, vol. 12, pp. 754-759, Aug 2013.

[17] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition," Advanced Materials, vol. 24, pp. 2320-2325, May 2 2012.

[18] W. Kern and K. F. Jensen, Thin Film Processes II. New York: Academic Press, 1991.

[19] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, "Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films," Scientific Reports, vol. 3, May 21 2013.

[20] X. L. Li and Y. D. Li, "Formation MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S," Chemistry-a European Journal, vol. 9, pp. 2726-2731, Jun 16 2003.

[21] Y. Zhang and J. Shi, "Chemical vapor deposition of monolayer WS2 nanosheets on Au foils towards direct application in hydrogen evolution," Nano research 2015.

[22] G. D. Gilliland, "Photoluminescence spectroscopy of crystalline semiconductors," Materials Science & Engineering R-Reports, vol. 18, pp. 99-399, Mar 1997.

[23] E. Calleja, F. J. Sanchez, D. Basak, M. A. SanchezGarcia, E. Munoz, I. Izpura, "Yellow luminescence and related deep states in undoped GaN," Physical Review B, vol. 55, pp. 4689-4694, Feb 15 1997.

[24] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous Lattice Vibrations of Single- and Few-Layer MoS2," Acs Nano, vol. 4, pp. 2695-2700, May 2010.

[25] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, "Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers," Nano Letters, vol. 13, pp. 3447-3454, Aug 2013.

[26] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, "Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2," Nanoscale, vol. 5, pp. 9677-9683, 2013 2013.

[27] Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, "Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys," Acs Nano, vol. 7, pp. 4610-4616, May 2013.

無法下載圖示 全文公開日期 2020/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE