簡易檢索 / 詳目顯示

研究生: 李智堯
Chih-yao lee
論文名稱: 不同轉角及道次之等徑轉角擠製對AZ31/WS2 INT鎂基複合材料微觀結構及機械性質影響之研究
Study of effects of equal channel angular pressing with different angle and pass of AZ31/WS2 INT magnesium matrix composites on their microstructure and mechanical properties
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 徐茂濱
Mau-Pin Hsu
黃崧任
Song-Jeng Huang
陳元方
Yuan-Fang Chen
羅裕龍
Yu-Lung Lo
林柏州
Po-Chou Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: PDF共103頁
中文關鍵詞: 鎂基複合材料等徑轉角擠製WS2無機奈米管重力鑄造電子背向散射繞射機械性質
外文關鍵詞: Magnesium matrix composites, Equal Channel Angular Pressing, WS2 inorganic nano tubes (WS_2-INT), Gravity casting, EBSD, Mechanical properties
相關次數: 點閱:305下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的是以AZ31鎂合金作為基材,以WS_2無機奈米管為強化相,利用重力鑄造及機械攪拌製備鎂基複合材,WS_2之添加量為0.1 wt. %及0.2 wt. %,以水刀切割成試棒後進行T4固溶處理,再分別以90°及120°之等徑轉角擠壓(ECAP)模具進行擠製,探討不同轉角及道次對於AZ31/WS_2 INT複合材之微觀結構及機械性質差異。
    從實驗結果中可以發現添加WS_2INT能夠透過晶粒細化有效的提升材料之降伏強度及延展性,透過T4熱處理能使得β-Mg_17 Al_12相溶解於機材中並析出鋁錳相,該相的析出有助於提升材料之延展性,而透過多道次ECAP擠製能使材料產生動態再結晶使晶粒大小更細並提升其延展性及拉伸強度,但由於90度ECAP所造成之應變過大使得材料無法保有良好的成形性。結合XRD、EBSD分析及拉伸實驗結果得知材料在經過不同道次ECAP後將呈現不同之結晶取向,在經過2道次ECAP後材料之結晶取向傾向於[1 ̅21 ̅0]方向使得最強之降伏強度達到164.3 MPa,而經過4道次ECAP後材料之結晶取向傾向於[0001]方向使得最強之降伏強度僅有114.1 MPa,該現象的主因為當拉伸方向與六方結構之c軸夾角不同時會影響主要的滑動模式。


    The main purpose of this study is to use AZ31 magnesium alloy as matrix and use WS_2-INT as the strengthening phase to produce Magnesium-based composites. After T4 heat treatment, materials will be extruded with 90° and 120° ECAP dies. Disscusions of effects about different angle and pass of ECAP will be included in this study.
    From the experimental results, it can be found that adding additional WS_2-INT in the matrix can effectively enhance the material's strength and ductility through grain refinement. Through T4 heat treatment, the β-Mg_17 Al_12 phase can be dissolved in the material and aluminum precipitates. The precipitation of this phase increase the ductility of the material. The multi-pass ECAP extrusion enables dynamic recrystallization of the material to refine the grain size and increase its ductility and tensile strength. However, due to the strain caused by the 90 degree ECAP is too large, the material cannot maintain good formability. Combined with XRD, EBSD analysis and tensile test results, the material shows different crystal orientations after different passes of ECAP. After two passes of ECAP, the crystal orientation of the material tends to [1 ̅21 ̅0] direction which makes the strongest yielding strength reach 164.3 MPa , and after four passes of ECAP, the crystal orientation of the material tends towards [0001] which which makes the strongest yielding strength only 114.1 MPa. The phenomenon of different crystal orientation is the main cause of the material with 4 passes of ECAP being inferior to the material of 2 passes ECAP.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 2 1.2.1 鑄造之相關文獻 2 1.2.2 鎂基複合材之相關文獻 4 1.2.3 等徑轉角擠製之相關文獻 7 1.2.4 鎂合金織構之相關文獻 9 1.3文獻回顧整理 12 1.4 研究動機與目的 13 第二章 研究理論基礎 15 2.1 鎂的基本性質 15 2.2 合金元素對鎂合金的影響 15 2.2.1 鋁元素的影響 15 2.2.2 鋅元素的影響 15 2.2.3 錳元素的影響 15 2.3 鎂合金之符號標示法 15 2.4 鎂合金之特性 15 2.5 鎂基複合材之強化機制 15 2.5.1 晶粒細化 15 2.5.2 析出強化 15 2.5.3 熱膨脹係數差異影響 15 2.5.4 Orowan強化及散佈強化 15 2.5.5負荷影響 15 2.6 鎂合金熱處理原理 15 2.7 WS2奈米管之特性 15 2.8 等徑轉角擠製原理 15 2.8.1 ECAP 塑性變形原理 15 2.8.2 ECAP 擠型路徑 15 第三章 實驗方法與步驟 15 3.1 實驗材料及強化相 17 3.2 實驗設備 17 3.2.1 電阻式熔煉爐 17 3.2.2 等徑轉角擠製機 19 3.2.3 高溫熱處理爐 21 3.2.4 濕式研磨/拋光機 22 3.2.5 光學顯微鏡 22 3.2.6 微型維克氏硬度機 23 3.2.7 拉伸試驗機 24 3.2.8 掃描式電子顯微鏡 25 3.2.9 愛克斯光繞射 25 3.2.10 離子研磨機 26 3.2.11 電子背向散射繞射 27 3.3 實驗規劃 28 3.3.1 鎂基材料製備流程 28 3.3.2 ECAP製程及試棒規劃 30 3.3.3 拉伸試片規劃 31 第四章 結果與討論 33 4.1 AZ31/WS2INT鎂基複合材之微觀結構分析 33 4.1.1 OM金相分析 33 4.1.2 平均晶粒尺寸分析 39 4.1.3 SEM微觀組織分析 41 4.2 XRD分析 45 4.3 EBSD分析 48 4.4 AZ31/WS2INT鎂基複合材之機械性質分析 51 4.4.1硬度試驗 51 4.4.1拉伸試驗 54 4.5 強化貢獻度之分析 62 4.6 複材最佳設計 66 4.7 小結論 69 第五章 結論 71 參考文獻 74

    [1] Valiev, R. Z., Islamgaliev, R. K., & Alexandrov, I. V. (2000). Bulk nanostructured materials from severe plastic deformation. Progress in materials science, 45(2), 103-189.
    [2] 吳懿璋(2014),強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究,國立臺灣科技大學機械工程學系碩士論文。
    [3] 陳辛樺(2014),改善鎂合金及鎂基複合材料AZ61/SiCp 鑄錠品質並探討製程對其機械性質的影響,國立臺灣科技大學機械工程學系碩士論文。
    [4] Wang, X., Wang, N., Wang, L., Hu, X., Wu, K., Wang, Y., & Huang, Y. (2014). Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Materials & Design, 57, 638-645.
    [5] Matin, A., Saniee, F. F., & Abedi, H. R. (2015). Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method. Materials Science and Engineering: A, 625, 81-88.
    [6] Shen, M., Zhang, M., & Ying, W. (2015). Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites. Journal of Magnesium and Alloys, 3(2), 162-167.
    [7] Huang, S.-J., Ho, C.-H., Feldman, Y., & Tenne, R. (2016). Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes. Journal of Alloys and Compounds, 654, 15-22.
    [8] Zhao, Z., Chen, Q., Chao, H., Hu, C., & Huang, S. (2011). Influence of equal channel angular extrusion processing parameters on the microstructure and mechanical properties of Mg–Al–Y–Zn alloy. Materials & Design, 32(2), 575-583.
    [9] Qiao, X., Ying, T., Zheng, M., Wei, E., Wu, K., Hu, X., . . . Golovin, I. (2016). Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP). Materials Characterization, 121, 222-230.
    [10] Wang, Y., & Choo, H. (2014). Influence of texture on Hall–Petch relationships in an Mg alloy. Acta Materialia, 81, 83-97.
    [11] Gopi, K., Nayaka, H. S., & Sahu, S. (2016). Investigation of microstructure and mechanical properties of ECAP-processed AM series magnesium alloy. Journal of Materials Engineering and Performance, 25(9), 3737-3745.
    [12] 洪品森(2009),鎂基複合材料的製備及其熱處理後機械性質之研究,國立中正大學機械工程學系研究所碩士論文。
    [13] 林柏州(2014),等徑轉角擠型(ECAE)製程對AM60/Al2O3p鎂基複合材料微結構及機械性質之影響,國立中正大學機械工程學系研究所博士論文。
    [14] 黃建忠(2013),強化相粒徑對AZ61/SiCP鎂基複合材料鑄錠及擠型材之機械性質影響的研究,國立台灣科技大學機械工程系研究所碩士論文。
    [15] 蔡承勳(2013),不同製程對AZ61/Al2O3P鎂基複合材料機械性質及疲勞之影響,國立台灣科技大學機械工程系研究所碩士論文。
    [16] 陸仁凱(2006),7XXX系含鈧鋁合金的顯微結構與機械性質之分析,國立中央大學機械工程研究所碩士論文。
    [17] Wang, Y., Liu, G., & Fan, Z. (2006). Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Materialia, 54(3), 689-699.
    [18] 蔡東霖(2001),利用ECAE及退火處理細化鋁鎂合金晶粒,國立中山大學材料科學研究所碩士論文。
    [19] Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in materials science, 51(7), 881-981.
    [20] Kaplan-Ashiri, I., Cohen, S. R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I.,Wagner, H D., Tenne, R. (2006). On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proceedings of the National Academy of Sciences, 103(3), 523-528.
    [21] 彭偉益(2016),WS2無機奈米材料製作與其對鋁基複合材料強化的應用,國立台灣科技大學機械工程學系碩士論文。
    [22] 張晉昌(2008),鑄造學,全華圖書股份有限公司。
    [23] Chen, T.-J., Jiang, X., Ma, Y., Li, Y., & Hao, Y. (2010). Grain refinement of AZ91D magnesium alloy by SiC. Journal of Alloys and Compounds, 496(1-2), 218-225.
    [24] 周暾煜(2016),等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響,國立台灣科技大學機械工程學系碩士論文。
    [25] Wang, Y., Liu, G., & Fan, Z. (2006). Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Materialia, 54(3), 689-699.
    [26] 黃政揚(2015),WS2無機奈米管對鎂基複合材的機械性質與微觀組織之研究,國立台灣科技大學機械工程學系碩士論文。
    [27] 康程為(2017),WS2無機奈米材料製作與不同強化相對鋁基複合材的機械性質及微觀組織影響之研究,國立台灣科技大學機械工程學系碩士論文。
    [28] Tang, L., Zhao, Y., Islamgaliev, R., Tsao, C. Y., Valiev, R., Lavernia, E., & Zhu, Y. (2016). Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP. Materials Science and Engineering: A, 670, 280-291.
    [29] Otorgust, G., Dodiuk, H., Kenig, S., & Tenne, R. (2017). Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT. European Polymer Journal, 89, 281-300.
    [30] Li, F., Liu, Y., & Li, X.-B. (2017). Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion. Frontiers of Materials Science, 11(3), 296-305.
    [31] Hilšer, O., Rusz, S., Maziarz, W., Dutkiewicz, J., Tański, T., Snopiński, P., & Džugan, J. (2017). Structure and properties of AZ31 magnesium alloy after combination of hot extrusion and ECAP. Acta Metallurgica Slovaca, 23(3),222-228.
    [32] Liu, H., Gong, N., Pang, L., & Zhang, X. (2008). Microstructure and mechanical properties of as-cast AZ31 with the addition of Sb. Materials Science and Engineering: A, 497(1-2), 254-259.
    [33] Zhu, Y., Wu, G., Zhang, Y.-H., & Zhao, Q. (2011). Growth and characterization of Mg (OH) 2 film on magnesium alloy AZ31. Applied Surface Science, 257(14), 6129-6137.
    [34] Zhou, M., Qu, X., Ren, L., Fan, L., Zhang, Y., Guo, Y., Quan, G., Tang, Q., Liu, B.,Sun, H. (2017). The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials, 10(12), 1385.

    QR CODE