簡易檢索 / 詳目顯示

研究生: Mohit Sood
Mohit Sood
論文名稱: 以碳有機框架模擬之晶格超材料結構之靜態與動態機械分析
Static and dynamic mechanical analysis of the carbon organic framework inspired lattice metamaterials structures
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 潘正堂
Cheng-Tang Pan
李貴琪
Kuei-Chi Lee
陳炤彰
Chao-Chang Chen
陳錦江
Jieng-Chiang Chen
蔡佳霖
Jia-Lin Tsai
邱長塤
Chang-Hsuan Chiu
吳昌謀
Chang-Mou Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 183
外文關鍵詞: Lattice structures, Fused deposition modelling, Mechanical properties, Dynamic compression
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於結構修改,構成材料吸收能量的能力可能會有所不同。本研究利用熔融沉積成型 (fusion deposition modelling, FDM)製造碳有機框架啟發的晶格超材料結構(carbon organic framework-inspired lattice metamaterials structures, CFLM)進行結構影響分析。結構製造中使用了聚乳酸(PLA)和丙烯腈丁二烯苯乙烯共聚物(ABS)。在靜態壓縮下,對結構的特定能量吸收進行了測試分析。使用正弦位移在靜態測試結果中找到的最佳結構進行動態壓縮計算了Tan(δ)、滯後功和動態彈性恢復(DER)。根據測試結果,表面結構產生了最佳的DER,而以彎曲為主的結構吸收了最多的能量。結構S3由於純晶格層壓垮而破壞,並吸收了最高的特定能量15.16 J/g,S3還顯示出第一峰值的特徵強度和相對模數分別為0.40 MPa/g和267.84 MPa,這是所有結構中最高的。儘管材料不同,但列印層在負載下的脫層(delamination)降低了結構的性能。
    當比較是用軟和硬聚合物於列印圓柱形結構時,由於兩種材料的圓柱具有相同的晶格結構,它們顯示出相似的壓縮致密化應變。結構的壓縮特性和破壞模式取決於材料的層間黏著。儘管TPEE由於孔連接處的壓縮破裂而破壞,相對地PLA結構的晶格孔脫層剝離則為主要破壞機制。晶格結構主宰了Tan δ和動態彈性恢復(DER)的結果。
    為進一步分析結構效應,使用從未在公開文獻中報導過的熱塑性聚酯彈性體(TPEE)製造的CFLMs(S1、S2、S3和SS)。並使用有限元素分析法(FEM)來確認機械特性、致密化應變和靜態壓縮測試的能量吸收。靜態壓縮研究顯示,TPEE的不同結構排列表現出從85.90至346.01 kJ/m3的能量吸收範圍,其中S2是能量吸收最佳的結構,達到346.01 kJ/m3。第二階段使用動態正弦壓縮,測試Tan δ、滯後功吸收和動態彈性恢復(DER)。結果表明,建議的晶格超材料在調節橡膠狀TPEE的DER、粘彈性和滯後能量吸收方面是有效的。為模擬此晶格超材料於鞋墊應用狀況,將此晶格超材料以動態重錘衝擊測試,以應用靜態和動態壓縮數據。動態重錘衝擊測試以及靜態和動態壓縮測試的結果顯示,S1是鞋墊前部的最佳材料,而SS是鞋跟區域的最佳材料。CFLMs的結構影響有效地提供了從信號TPEE材料中獲得的各種機械特性。
    為改進CFLM的性能,使用了一種獨特的混成軌域啟發之鑲嵌(orbital hybridization-inspired tessellation)方法進行結構設計。鑲嵌效應有可能改變晶格結構的特性。軌域混成過程包括軌域的重疊,晶格單元被視為研究目的的軌域,並根據混成軌域組織的sp、sp2、sp3和sp3d2進行組織。同樣使用PLA與FDM創建所需的鑲嵌結構。使用靜態和正弦壓縮載荷來研究機械特性。結果表明,通過鑲嵌混成軌域效應,可以有效地產生具有相同相對密度的結構的不同機械特性。由sp3靈感的鑲嵌展示了最大的能量吸收,達到4002 kJ/m3。鑲嵌方法可能表現出兩種不同的破壞模式。由於層和單元的破裂,結構表現不佳,因為逐層破裂更加一致和漸進。當位移速率相同時,所有結構都顯示出相似的行為。在相對體積分數的轉變中,能量吸收的類似模式,而對於更高的體積分數,能量值更大。序列變化效應顯示了鑲嵌結構的新變形模式是挫曲破壞。在動態加載下,混成軌域鑲嵌效應展示了不同的恢復百分比和滯後功吸收。測試結果顯示,軌域混成鑲嵌方法被成功應用於改變晶格單元的靜態和動態機械特性。


    Constituent materials' capacity to absorb energy may vary due to structural modifications. The structural impact is analysed using carbon organic framework-inspired structures produced using fusion deposition modelling utilising polylactic acid and acrylonitrile butadiene styrene polymers. Under static compression, the structures' specific energy absorption was characterised. Tan(δ), hysteresis work, and dynamic elastic recovery (DER) were computed using sinusoidal displacement on the best structures found in the static testing results for dynamic compression. The surface structure produced the best DER, whereas the bending-dominated structure absorbed the most energy, according to the data. The structure that collapsed due to the layer's pure collapse displayed the best particular values. Despite the materials, the delamination of printed layers under loading decreased the performance of the constructions.
    When a soft and a hard polymer structure in cylindrical shape were compared, Because both materials' cylinders have the same lattice structure, they show comparable densification strains. The compressive characteristics and mechanisms of collapse of structures are largely dependent on the interlayer adhesion of materials. Whereas TPEE collapsed as a result of connection hole collapse, the PLA structure's lattice hole collapse delaminated. The lattice structure dominates Tan δ findings and dynamic elastic recovery (DER). Square lattice structures are not as strong as cylindrical lattice structures.
    For analysing the structural impacts, using thermoplastic polyester elastomer (TPEE) and (CFLM). The CFLMs (S1, S2, S3, and SS) from TPEE were never before reported and were effectively created by material extrusion (MEX) using fused-filament manufacturing. Initially, the finite element method (FEM) was used to confirm the mechanical characteristics, densification strain, and energy absorption by static compression testing. Static compression studies showed that the SS structure had the maximum energy absorption, followed by S2. Dynamic sinusoidal compression was used in the second stage, which was based on the static test, to compute Tan δ, hysteresis work absorption, and dynamic elastic recovery (DER). The results demonstrated that the suggested lattice metamaterials were effective in tailoring the rubber-like TPEE's DER, viscoelasticity, and hysteresis energy absorption. Shoe midsoles were put through a dynamic drop weight impact test in order to apply static and dynamic compression data. The findings of dynamic drop weight impact tests as well as static and dynamic compression testing indicated that S1 was the best material for the toe portion of the shoe midsole and SS was the best material for the heel area. The structural impact of CFLMs effectively offered various mechanical characteristics in the static and dynamic tests from the signal TPEE material, according to the overall findings of all characterizations.
    For improvement in the properties of CFLM the lattice structure, a unique orbital hybridization-inspired tessellation method was put out. The tessellation effect has the potential to modify a lattice's characteristics. The hybridization process included the orbitals overlapping, and the lattice unit cell was regarded as an orbital for the purposes of the research and organised in accordance with hybridization configurations inspired by sp, sp2, sp3, and sp3d2. A bridgeable polylactic acid (PLA) polymer was used in material extrusion (MEX) to create the intended tessellated structures. This hybridization tessellation method, which was created from PLA utilising MEX manufacturing and included overlap and edge-to-edge tessellation in a single structure, has never been documented previously. Static and sinusoidal compression loads were used to investigate the mechanical characteristics. The results demonstrated that distinct mechanical characteristics from structures with the same relative density may be effectively produced by the hybridization tessellation effect. The greatest energy absorption was shown by the tessellation inspired by sp3. There are two different types of failure modes that the tessellation approach might exhibit. The structure performed poorly as a consequence of layers and cell breakdown because layer-wise failure is more consistent and gradual. The tessellated structure that was inspired by sp3 also demonstrated the greatest modulus and plateau stress. Nearly same behaviour was seen by all the structures at the greater displacement rate. Similar patterns of energy absorption were seen in the shift in relative volume fraction, while larger energy values were seen for higher volume fractions. The sequence change effect demonstrated how bucking failure becomes the new deformation mode for tessellated structures. Under dynamic loading, the inspired tessellation effect exhibits varying recovery percentages and hysteresis work absorption. The orbital hybridization tessellation approach was effectively employed to modify the static and dynamic mechanical characteristics of lattice unit cells, as shown by the overall result.

    Table of Contents Abstract..................... I Acknowledgement .................................... VI Table of Contents ...................................... VII Figure List ...............IX Table List .................XI 1. Introduction 1.1 Introduction: Additive Manufacturing (AM) ....................... 1 1.2 Significance of Additive Manufacturing ............................... 2 1.3 Types of additive manufacturing .................... 7 1.4 Fused Deposition Modeling (FDM) for Additive ............. 12 1.5 The steps involved in FDM Process ...................................... 12 1.6 Advantages of FDM ............................ 13 1.7 Limitations of FDM ............................. 22 1.8 Applications of FDM .......................... 28 1.9 Polymer materials used for FDM ... 35 1.10 Mechanical metamaterials ............ 41 1.11 Lattice metamaterials ...................... 43 2. Literature review 2.1 Literature survey .................................. 50 2.2 Summarization of literature review ...................................... 96 3. Problem formulation and objectives 3.1 Problem formulation based upon structures ................... 98 3.2 Material selection ............................. 100 3.2 Objectives of study .......................... 100 4. Design, fabrication & Experiment 4.1 Design and fabrication and characterization of structure (rigid polymer) structures ............ 103 4.2 Design and fabrication of cylinder structure ................. 107 4.3 Design fabrication and testing of soft polymer structures .............................. 110 4.4 Design fabrication and testing of tessellated structures .................................. 115 5. Results and discussion 5.1 Influence of 3D printed structures on energy absorption ability of brittle polymers under dynamic cyclic loading ................................. 121 5.2 Mechanical properties of 3D-printed lattice cylindrical structure with recyclable elastomeric and thermoplastic polymers ......... 132 5.3 Influence of structural arrangements on static and dynamic proper ties of additively manufactured polyester elastomer lattice metamaterials ................. 141 5.4 Orbital hybridization inspired tessellation strategy for lattice structures to influence static compression properties ............................... 155 6. Conclusion & Future scope 6.1 Conclusion ...................... 173 6.2 Future scope ..................................... 176 References ............. 177

    [1] B. Thakur, N. V. Chandra Shekar, S. Chandra, S. Chakravarty, Effect of sp hybridization and bond-length disorder on magnetism in amorphous carbon- A first-principles study, Diam. Relat. Mater. 121 (2022) 108725. https://doi.org/10.1016/j.diamond.2021.108725.
    [2] A. Marotta, C.E. Adams, J.J. Molloy, The Impact of Boron Hybridisation on Photocatalytic Processes, Angew. Chemie - Int. Ed. 61 (2022). https://doi.org/10.1002/anie.202207067.
    [3] E. Meraz Trejo, X. Jimenez, K.M.M. Billah, J. Seppala, R. Wicker, D. Espalin, Compressive deformation analysis of large area pellet-fed material extrusion 3D printed parts in relation to in situ thermal imaging, Addit. Manuf. 33 (2020) 101099. https://doi.org/10.1016/j.addma.2020.101099.
    [4] C. Teng, D. Pal, H. Gong, K. Zeng, K. Briggs, N. Patil, B. Stucker, A review of defect modeling in laser material processing, Addit. Manuf. 14 (2017) 137–147. https://doi.org/10.1016/j.addma.2016.10.009.
    [5] Y. Fu, A. Downey, L. Yuan, A. Pratt, Y. Balogun, In situ monitoring for fused filament fabrication process: A review, Addit. Manuf. 38 (2021) 101749. https://doi.org/10.1016/j.addma.2020.101749.
    [6] H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Development of a manufacturing process for Binder Jet 3D printed porous Al2O3 supports used in heterogeneous catalysis, Addit. Manuf. 50 (2022) 102498. https://doi.org/10.1016/j.addma.2021.102498.
    [7] R. Swetha, L. Siva Rama Krishna, B. Hari Sai Kiran, P. Ravinder Reddy, S. Venkatesh, Comparative study on life cycle assessment of components produced by additive and conventional manufacturing process, Mater. Today Proc. 62 (2022) 4332–4340. https://doi.org/10.1016/j.matpr.2022.04.840.
    [8] G.H. Loh, E. Pei, D. Harrison, M.D. Monzón, An overview of functionally graded additive manufacturing, Addit. Manuf. 23 (2018) 34–44. https://doi.org/10.1016/j.addma.2018.06.023.
    [9] C.S. Abbott, M. Sperry, N.B. Crane, Relationships between porosity and mechanical properties of polyamide 12 parts produced using the laser sintering and multi-jet fusion powder bed fusion processes, J. Manuf. Process. 70 (2021) 55–66. https://doi.org/10.1016/j.jmapro.2021.08.012.
    [10] J. Zhang, G. Lu, Z. You, Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Compos. Part B Eng. 201 (2020) 108340. https://doi.org/10.1016/j.compositesb.2020.108340.
    [11] J. Sun, S. Yu, J. Wade-Zhu, Y. Wang, H. Qu, S. Zhao, R. Zhang, J. Yang, J. Binner, J. Bai, 3D printing of ceramic composite with biomimetic toughening design, Addit. Manuf. 58 (2022) 103027. https://doi.org/10.1016/j.addma.2022.103027.
    [12] X. Zhang, Q. Meng, K. Zhang, R. Zhu, Z. Qu, Y. Li, R. He, 3D-printed bioinspired Al2O3/polyurea dual-phase architecture with high robustness, energy absorption, and
    References
    cyclic life, Chem. Eng. J. 463 (2023) 142378. https://doi.org/10.1016/j.cej.2023.142378.
    [13] T. Yang, Z. Jia, Z. Wu, H. Chen, Z. Deng, L. Chen, Y. Zhu, L. Li, High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid, Nat. Commun. 13 (2022). https://doi.org/10.1038/s41467-022-33712-z.
    [14] F. Ren, L. Wang, H. Liu, Low frequency and broadband vibration attenuation of a novel lightweight bidirectional re-entrant lattice metamaterial, Mater. Lett. 299 (2021) 130133. https://doi.org/10.1016/j.matlet.2021.130133.
    [15] S. Srivatsa, R.S. Kumar, D. Selva, M.N. Silberstein, Examining the impact of asymmetry in lattice-based mechanical metamaterials, Mech. Mater. 172 (2022). https://doi.org/10.1016/j.mechmat.2022.104386.
    [16] N. Tsushima, R. Higuchi, Stiffness and strength evaluation of lattice-based mechanical metamaterials by decoupled two-scale analysis, Mater. Today Commun. 31 (2022) 103598. https://doi.org/10.1016/j.mtcomm.2022.103598.
    [17] A. Cano-Vicent, M.M. Tambuwala, S.S. Hassan, D. Barh, A.A.A. Aljabali, M. Birkett, A. Arjunan, Á. Serrano-Aroca, Fused deposition modelling: Current status, methodology, applications and future prospects, Addit. Manuf. 47 (2021). https://doi.org/10.1016/j.addma.2021.102378.
    [18] D.D. Lim, J. Park, J. Lee, D. Noh, J. Lee, J. Choi, W. Choi, Broadband mechanical metamaterial absorber enabled by fused filament fabrication 3D printing, Addit. Manuf. 55 (2022) 102856. https://doi.org/10.1016/j.addma.2022.102856.
    [19] S. Bhagia, K. Bornani, R. Agarwal, A. Satlewal, J. Ďurkovič, R. Lagaňa, M. Bhagia, C.G. Yoo, X. Zhao, V. Kunc, Y. Pu, S. Ozcan, A.J. Ragauskas, Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Appl. Mater. Today. 24 (2021). https://doi.org/10.1016/j.apmt.2021.101078.
    [20] B.P. Heller, D.E. Smith, D.A. Jack, Effects of extrudate swell and nozzle geometry on fiber orientation in Fused Filament Fabrication nozzle flow, Addit. Manuf. 12 (2016) 252–264. https://doi.org/10.1016/j.addma.2016.06.005.
    [21] S. Guo, R. Gao, X. Tian, S. Liu, A 3D metamaterial with negative stiffness for six-directional energy absorption and cushioning, Thin-Walled Struct. 180 (2022) 109963. https://doi.org/10.1016/j.tws.2022.109963.
    [22] L.R. Lopes, A.F. Silva, O.S. Carneiro, Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance, Addit. Manuf. 23 (2018) 45–52. https://doi.org/10.1016/j.addma.2018.06.027.
    [23] H. Sadaghian, S. Khalilzadehtabrizi, M. Farzam, S. Dehghan, Behavior of 3D-printed polymers under monotonic torsion – A database of 15 different materials, Addit. Manuf. 60 (2022) 103251. https://doi.org/10.1016/j.addma.2022.103251.
    [24] L. Shen, K. Wei, K. Yuan, C. Shi, Z. Li, Z. Wang, A novel metamaterial incorporating both auxeticity and thermal shrinkage, Int. J. Mech. Sci. 233 (2022) 107650. https://doi.org/10.1016/j.ijmecsci.2022.107650.
    [25] R. Kumar, M. Kumar, J.S. Chohan, S. Kumar, Overview on metamaterial: History,types and applications, Mater. Today Proc. 56 (2022) 3016–3024. https://doi.org/10.1016/j.matpr.2021.11.423.
    [26] U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials, Nat. Mater. 14 (2015) 23–36. https://doi.org/10.1038/nmat4089.
    [27] H. Zhu, P. Wang, D. Wei, J. Si, Y. Wu, Energy absorption of diamond lattice cylindrical shells under axial compression loading, Thin-Walled Struct. 181 (2022) 110131. https://doi.org/10.1016/j.tws.2022.110131.
    [28] J.N. Grima, R. Caruana-Gauci, Mechanical metamaterials: Materials that push back, Nat. Mater. 11 (2012) 565–566. https://doi.org/10.1038/nmat3364.
    [29] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar, Mechanical property of FDM printed ABS: influence of printing parameters, Int. J. Adv. Manuf. Technol. 102 (2019) 2779–2796. https://doi.org/10.1007/s00170-019-03313-0.
    [30] M. Galeja, A. Hejna, P. Kosmela, A. Kulawik, Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle, Materials (Basel). 13 (2020) 297. https://doi.org/10.3390/ma13020297.
    [31] A. Arivazhagan, S.H. Masood, Dynamic Mechanical Properties of ABS Material Processed by Fused Deposition Modelling, (n.d.).
    [32] T.F. Abbas, F.M. Othman, H.B. Ali, Influence of Layer Thickness on Impact Property of 3D-Printed PLA, (2018).
    [33] S. Wang, Y. Ma, Z. Deng, S. Zhang, J. Cai, Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials, Polym. Test. 86 (2020) 106483. https://doi.org/10.1016/J.POLYMERTESTING.2020.106483.
    [34] M. Rinaldi, T. Ghidini, F. Cecchini, A. Brandao, F. Nanni, Additive layer manufacturing of poly (ether ether ketone) via FDM, Compos. Part B Eng. 145 (2018) 162–172. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.03.029.
    [35] S.R. Rajpurohit, H.K. Dave, Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer, Int. J. Adv. Manuf. Technol. 101 (2019) 1525–1536. https://doi.org/10.1007/s00170-018-3047-x.
    [36] M. Dawoud, I. Taha, S.J. Ebeid, Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques, J. Manuf. Process. 21 (2016) 39–45. https://doi.org/https://doi.org/10.1016/j.jmapro.2015.11.002.
    [37] S. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp. J. 8 (2002) 248–257. https://doi.org/10.1108/13552540210441166.
    [38] C. Peng, P. Tran, Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings, Compos. Part B Eng. 188 (2020) 107773. https://doi.org/https://doi.org/10.1016/j.compositesb.2020.107773.
    [39] B. Hou, Y. Wang, T.F. Sun, J.G. Liu, H. Zhao, On the quasi-static and impact responses of aluminum honeycomb under combined shear-compression, Int. J. Impact Eng. 131 (2019) 190–199.https://doi.org/https://doi.org/10.1016/j.ijimpeng.2019.05.005.
    [40] S. Duan, Y. Tao, H. Lei, W. Wen, J. Liang, D. Fang, Enhanced out-of-plane compressive strength and energy absorption of 3D printed square and hexagonal honeycombs with variable-thickness cell edges, Extrem. Mech. Lett. 18 (2018) 9–18. https://doi.org/https://doi.org/10.1016/j.eml.2017.09.016.
    [41] J. Chung, A.M. Waas, Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading. Part I: experiments, Int. J. Impact Eng. 27 (2002) 729–754. https://doi.org/https://doi.org/10.1016/S0734-743X(02)00011-8.
    [42] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, A.A. Zadpoor, Mechanical properties of additively manufactured octagonal honeycombs, Mater. Sci. Eng. C. 69 (2016) 1307–1317. https://doi.org/https://doi.org/10.1016/j.msec.2016.08.020.
    [43] F.N. Habib, P. Iovenitti, S.H. Masood, M. Nikzad, Cell geometry effect on in-plane energy absorption of periodic honeycomb structures, Int. J. Adv. Manuf. Technol. 94 (2018) 2369–2380. https://doi.org/10.1007/s00170-017-1037-z.
    [44] Y. Tao, W. Li, K. Wei, S. Duan, W. Wen, L. Chen, Y. Pei, D. Fang, Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression, Compos. Part B Eng. 176 (2019) 107219. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.107219.
    [45] H. Yin, Z. Liu, J. Dai, G. Wen, C. Zhang, Crushing behavior and optimization of sheet-based 3D periodic cellular structures, Compos. Part B Eng. 182 (2020) 107565. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.107565.
    [46] C. Bonatti, D. Mohr, Smooth-shell metamaterials of cubic symmetry: Anisotropic elasticity, yield strength and specific energy absorption, Acta Mater. 164 (2019) 301–321. https://doi.org/https://doi.org/10.1016/j.actamat.2018.10.034.
    [47] B. Zheng, Y. Liu, J. Liu, S. Yin, J. Xu, Novel mechanical behaviors of DNA-inspired helical structures with chirality, Int. J. Mech. Sci. 161–162 (2019) 105025. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2019.105025.
    [48] J. Cai, Y. Ma, Z. Deng, On the effective elastic modulus of the ribbed structure based on Schwarz Primitive triply periodic minimal surface, Thin-Walled Struct. 170 (2022) 108642. https://doi.org/https://doi.org/10.1016/j.tws.2021.108642.
    [49] M.J. Silva, L.J. Gibson, The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids, Int. J. Mech. Sci. 39 (1997) 549–563. https://doi.org/https://doi.org/10.1016/S0020-7403(96)00065-3.
    [50] Y.M. Hailu, A. Nazir, C.-P. Hsu, S.-C. Lin, J.-Y. Jeng, Investigation of torsional properties of surface- and strut-based lattice structures manufactured using multiJet fusion technology, Int. J. Adv. Manuf. Technol. 119 (2022) 5929–5945. https://doi.org/10.1007/s00170-022-08681-8.
    [51] K. Krishnan, D.-W. Lee, M. Al Teneji, R.K. Abu Al-Rub, Effective stiffness, strength, buckling and anisotropy of foams based on nine unique triple periodic minimal surfaces, Int. J. Solids Struct. 238 (2022) 111418. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2021.111418.
    [52] T. Maconachie, R. Tino, B. Lozanovski, M. Watson, A. Jones, C. Pandelidi, A. Alghamdi, A. Almalki, D. Downing, M. Brandt, M. Brandt, M. Leary, The compressive behaviour of ABS gyroid lattice structures manufactured by fused deposition modelling, Int. J. Adv. Manuf. Technol. 107 (2020) 4449–4467. https://doi.org/10.1007/s00170-020-05239-4.
    [53] S. Ghaemi Khiavi, B. Mohammad Sadeghi, M. Divandari, Effect of topology on strength and energy absorption of PA12 non-auxetic strut-based lattice structures, J. Mater. Res. Technol. 21 (2022) 1595–1613. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.09.116.
    [54] R. Daya Karthic, J. Joy, G. Sakthivel, R. Nadimpalli, Mechanical characterization of 3D-printed Kelvin cell with varying infill densities, Mater. Today Proc. 84 (2023) 41–46. https://doi.org/https://doi.org/10.1016/j.matpr.2023.04.675.
    [55] M. Lay, N.L.N. Thajudin, Z.A.A. Hamid, A. Rusli, M.K. Abdullah, R.K. Shuib, Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding, Compos. Part B Eng. 176 (2019) 107341. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.107341.
    [56] R. Nam, M. Jakubinek, H. Niknam, M. Rahmat, B. Ashrafi, H.E. Naguib, 3D printed octet plate-lattices for tunable energy absorption, Mater. Des. 228 (2023) 111835. https://doi.org/https://doi.org/10.1016/j.matdes.2023.111835.
    [57] M.J. Mirzaali, A. Herranz de la Nava, D. Gunashekar, M. Nouri-Goushki, R.P.E. Veeger, Q. Grossman, L. Angeloni, M.K. Ghatkesar, L.E. Fratila-Apachitei, D. Ruffoni, E.L. Doubrovski, A.A. Zadpoor, Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing, Compos. Struct. 237 (2020) 111867. https://doi.org/https://doi.org/10.1016/j.compstruct.2020.111867.
    [58] H. Yazdani Sarvestani, A.H. Akbarzadeh, A. Mirbolghasemi, K. Hermenean, 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability, Mater. Des. 160 (2018) 179–193. https://doi.org/https://doi.org/10.1016/j.matdes.2018.08.061.
    [59] G. Ye, H. Bi, Z. Li, Y. Hu, Compression performances and failure modes of 3D printed pyramidal lattice truss composite structures, Compos. Commun. 24 (2021) 100615. https://doi.org/https://doi.org/10.1016/j.coco.2020.100615.
    [60] N.S. Ha, G. Lu, X. Xiang, Energy absorption of a bio-inspired honeycomb sandwich panel, J. Mater. Sci. 54 (2019) 6286–6300. https://doi.org/10.1007/s10853-018-3163-x.
    [61] S. Kumar, J. Ubaid, R. Abishera, A. Schiffer, V.S. Deshpande, Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing, ACS Appl. Mater. Interfaces. 11 (2019) 42549–42560. https://doi.org/10.1021/acsami.9b12880.
    [62] H. Niknam, A.H. Akbarzadeh, Graded lattice structures: Simultaneous enhancement in stiffness and energy absorption, Mater. Des. 196 (2020) 109129. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109129.
    [63] H.H. Tsang, S. Raza, Impact energy absorption of bio-inspired tubular sections with structural hierarchy, Compos. Struct. 195 (2018) 199–210. https://doi.org/https://doi.org/10.1016/j.compstruct.2018.04.057.
    [64] S.R.G. Bates, I.R. Farrow, R.S. Trask, Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities, Mater. Des. 162 (2019) 130–142. https://doi.org/https://doi.org/10.1016/j.matdes.2018.11.019.
    [65] J. Yang, X. Chen, Y. Sun, J. Zhang, C. Feng, Y. Wang, K. Wang, L. Bai, Compressive properties of bidirectionally graded lattice structures, Mater. Des. 218 (2022) 110683. https://doi.org/https://doi.org/10.1016/j.matdes.2022.110683.
    [66] Q. Wu, Y. Gao, X. Wei, D. Mousanezhad, L. Ma, A. Vaziri, J. Xiong, Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores, Int. J. Solids Struct. 132–133 (2018) 171–187. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2017.09.024.
    [67] J. Mueller, K. Shea, Stepwise graded struts for maximizing energy absorption in lattices, Extrem. Mech. Lett. 25 (2018) 7–15. https://doi.org/https://doi.org/10.1016/j.eml.2018.10.006.
    [68] M. Nasim, U. Galvanetto, Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression, Mater. Today Commun. 29 (2021) 102902. https://doi.org/https://doi.org/10.1016/j.mtcomm.2021.102902.
    [69] V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids. 49 (2001) 1747–1769. https://doi.org/https://doi.org/10.1016/S0022-5096(01)00010-2.
    [70] A.M. Abou-Ali, O. Al-Ketan, R. Rowshan, R. Abu Al-Rub, Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids, J. Mater. Eng. Perform. 28 (2019) 2316–2326. https://doi.org/10.1007/s11665-019-03982-8.
    [71] R. Gautam, S. Idapalapati, S. Feih, Printing and characterisation of Kagome lattice structures by fused deposition modelling, Mater. Des. 137 (2018) 266–275. https://doi.org/10.1016/j.matdes.2017.10.022.
    [72] D. Snelling, Q. Li, N. Meisel, C.B. Williams, R.C. Batra, A.P. Druschitz, Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds, Adv. Eng. Mater. 17 (2015) 923–932. https://doi.org/https://doi.org/10.1002/adem.201400524.
    [73] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method, Mater. Des. 30 (2009) 4243–4252. https://doi.org/https://doi.org/10.1016/j.matdes.2009.04.030.
    [74] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater. Des. 31 (2010) 287–295. https://doi.org/https://doi.org/10.1016/j.matdes.2009.06.016.
    [75] C. Yang, Q.M. Li, Advanced lattice material with high energy absorption based on topology optimisation, Mech. Mater. 148 (2020) 103536. https://doi.org/https://doi.org/10.1016/j.mechmat.2020.103536.
    [76] J. Plocher, A. Panesar, Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures,Addit. Manuf. 33 (2020) 101171. https://doi.org/https://doi.org/10.1016/j.addma.2020.101171.
    [77] Z. Ozdemir, E. Hernandez-Nava, A. Tyas, J.A. Warren, S.D. Fay, R. Goodall, I. Todd, H. Askes, Energy absorption in lattice structures in dynamics: Experiments, Int. J. Impact Eng. 89 (2016) 49–61. https://doi.org/https://doi.org/10.1016/j.ijimpeng.2015.10.007.
    [78] Y. Duan, B. Du, X. Shi, B. Hou, Y. Li, Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells, Int. J. Impact Eng. 132 (2019) 103303. https://doi.org/https://doi.org/10.1016/j.ijimpeng.2019.05.017.
    [79] M. Avalle, G. Belingardi, R. Montanini, Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng. 25 (2001) 455–472. https://doi.org/https://doi.org/10.1016/S0734-743X(00)00060-9.
    [80] T. Li, L. Wang, Bending behavior of sandwich composite structures with tunable 3D-printed core materials, Compos. Struct. 175 (2017) 46–57. https://doi.org/https://doi.org/10.1016/j.compstruct.2017.05.001.
    [81] Y. Song, Z. Wang, L. Zhao, J. Luo, Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model, Mater. Des. 31 (2010) 4281–4289. https://doi.org/https://doi.org/10.1016/j.matdes.2010.04.007.
    [82] Y. Zhang, M. Lu, C.H. Wang, G. Sun, G. Li, Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs, Compos. Struct. 144 (2016) 1–13. https://doi.org/https://doi.org/10.1016/j.compstruct.2016.02.014.
    [83] S. Yuan, C.K. Chua, K. Zhou, 3D-Printed Mechanical Metamaterials with High Energy Absorption, Adv. Mater. Technol. 4 (2019) 1800419. https://doi.org/https://doi.org/10.1002/admt.201800419.
    [84] L. Teng, D. Qingtian, L. Xinbo, Energy absorption and deformation modes of several thin-walled tubes under dynamic compression, Structures. 54 (2023) 890–897. https://doi.org/https://doi.org/10.1016/j.istruc.2023.05.099.
    [85] L.-C. Wang, W.-L. Song, D. Fang, Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage, ACS Appl. Mater. Interfaces. 11 (2019) 3450–3458. https://doi.org/10.1021/acsami.8b17776.
    [86] F.N. Habib, P. Iovenitti, S.H. Masood, M. Nikzad, Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology, Mater. Des. 155 (2018) 86–98. https://doi.org/https://doi.org/10.1016/j.matdes.2018.05.059.
    [87] Z.P. Sun, Y.B. Guo, V.P.W. Shim, Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption, Int. J. Mech. Sci. 191 (2021) 106101. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2020.106101.
    [88] M.M. Osman, M. Shazly, E.A. El-Danaf, P. Jamshidi, M.M. Attallah, Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications, Compos. Part B Eng. 184 (2020) 107715. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.107715.
    [89] T. Tancogne-Dejean, D. Mohr, Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams, Int. J. Mech. Sci. 141 (2018) 101–116. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2018.03.027.
    [90] T. Tancogne-Dejean, D. Mohr, Elastically-isotropic elementary cubic lattices composed of tailored hollow beams, Extrem. Mech. Lett. 22 (2018) 13–18. https://doi.org/https://doi.org/10.1016/j.eml.2018.04.005.
    [91] K.-W. Lee, S.-H. Lee, K.-H. Noh, J.-Y. Park, Y.-J. Cho, S.-H. Kim, Theoretical and numerical analysis of the mechanical responses of BCC and FCC lattice structures, J. Mech. Sci. Technol. 33 (2019) 2259–2266. https://doi.org/10.1007/s12206-019-0427-6.
    [92] S. Yu, J. Sun, J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des. 182 (2019) 108021. https://doi.org/https://doi.org/10.1016/j.matdes.2019.108021.
    [93] D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, I. Jasiuk, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Des. 122 (2017) 255–267. https://doi.org/https://doi.org/10.1016/j.matdes.2017.03.018.
    [94] J. Kadkhodapour, H. Montazerian, S. Raeisi, Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure, Mater. Sci. Eng. C. 43 (2014) 587–597. https://doi.org/https://doi.org/10.1016/j.msec.2014.07.047.
    [95] H. Zhou, D.Z. Zhang, N. He, M. Zhao, Topology optimization of multi-morphology composite lattice structure with anisotropy properties, Compos. Struct. 321 (2023) 117294. https://doi.org/https://doi.org/10.1016/j.compstruct.2023.117294.
    [96] K. Wei, Q. Yang, B. Ling, H. Xie, Z. Qu, D. Fang, Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting, Extrem. Mech. Lett. 23 (2018) 41–48. https://doi.org/https://doi.org/10.1016/j.eml.2018.07.001.
    [97] J.-H. Lim, K.-J. Kang, Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires, Int. J. Solids Struct. 43 (2006) 5228–5246. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2005.07.011.
    [98] S. Xiao, Q. Li, H. Jia, F. Wang, J. Gao, W. Lv, J. Qi, S. Duan, P. Wang, H. Lei, Mechanical responses and energy absorption characteristics of a novel functionally graded voxel lattice structure, Thin-Walled Struct. 193 (2023) 111244. https://doi.org/https://doi.org/10.1016/j.tws.2023.111244.
    [99] H. Zhang, G. Lin, W. Sun, Structural design and tunable mechanical properties of novel corrugated 3D lattice metamaterials by geometric tailoring, Thin-Walled Struct. 184 (2023) 110495. https://doi.org/https://doi.org/10.1016/j.tws.2022.110495.
    [100] M. Zhao, X. Li, D.Z. Zhang, W. Zhai, Design, mechanical properties and optimization of lattice structures with hollow prismatic struts, Int. J. Mech. Sci. 238 (2023) 107842. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.107842.
    [101] R. Gümrük, R.A.W. Mines, S. Karadeniz, Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions, Mater. Sci. Eng. A. 586 (2013) 392–406. https://doi.org/https://doi.org/10.1016/j.msea.2013.07.070.
    [102] O. Al-Ketan, D.-W. Lee, R. Rowshan, R.K. Abu Al-Rub, Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties, J. Mech. Behav. Biomed. Mater. 102 (2020) 103520. https://doi.org/https://doi.org/10.1016/j.jmbbm.2019.103520.
    [103] H. Lei, C. Li, X. Zhang, P. Wang, H. Zhou, Z. Zhao, D. Fang, Deformation behavior of heterogeneous multi-morphology lattice core hybrid structures, Addit. Manuf. 37 (2021) 101674. https://doi.org/https://doi.org/10.1016/j.addma.2020.101674.
    [104] D. Qi, H. Yu, M. Liu, H. Huang, S. Xu, Y. Xia, G. Qian, W. Wu, Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams, Int. J. Mech. Sci. 163 (2019) 105091. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2019.105091.
    [105] G. Dong, Y. Tang, D. Li, Y.F. Zhao, Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing, Addit. Manuf. 33 (2020) 101116. https://doi.org/https://doi.org/10.1016/j.addma.2020.101116.
    [106] K. Zied, M. Osman, T. Elmahdy, Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores, Phys. Status Solidi. 252 (2015) 2685–2692. https://doi.org/https://doi.org/10.1002/pssb.201552164.
    [107] J. Qiao, C. Chen, In-plane crushing of a hierarchical honeycomb, Int. J. Solids Struct. 85–86 (2016) 57–66. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2016.02.003.
    [108] W. Zhang, H. Wang, X. Lou, Z. Yan, J. Shao, T. Wu, Q. Qin, On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb, Thin-Walled Struct. 194 (2024) 111303. https://doi.org/https://doi.org/10.1016/j.tws.2023.111303.
    [109] M. Sadegh Ebrahimi, R. Hashemi, E. Etemadi, In-plane energy absorption characteristics and mechanical properties of 3D printed novel hybrid cellular structures, J. Mater. Res. Technol. 20 (2022) 3616–3632. https://doi.org/https://doi.org/10.1016/j.jmrt.2022.08.064.
    [110] C. Bonatti, D. Mohr, Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments, J. Mech. Phys. Solids. 122 (2019) 1–26. https://doi.org/https://doi.org/10.1016/j.jmps.2018.08.022.
    [111] X. Wang, R. Qin, X. Zhang, B. Chen, Quasi-static and dynamic behavior of additively manufactured metamaterial structures with layered-hybrid topologies, Thin-Walled Struct. 183 (2023) 110434. https://doi.org/10.1016/j.tws.2022.110434.
    [112] D.W. Holmes, D. Singh, R. Lamont, R. Daley, D.P. Forrestal, P. Slattery, E. Pickering, N.C. Paxton, S.K. Powell, M.A. Woodruff, Mechanical behaviour of flexible 3D printed gyroid structures as a tuneable replacement for soft padding foam, Addit. Manuf. 50 (2022) 102555. https://doi.org/10.1016/j.addma.2021.102555.
    [113] S. Townsend, R. Adams, M. Robinson, B. Hanna, P. Theobald, 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior, Mater. Des. 195 (2020) 108930. https://doi.org/10.1016/j.matdes.2020.108930.
    [114] M.F. Guo, H. Yang, L. Ma, 3D lightweight double arrow-head plate-lattice auxetic structures with enhanced stiffness and energy absorption performance, Compos. Struct. 290 (2022). https://doi.org/10.1016/j.compstruct.2022.115484.
    [115] E. Heiml, A. Hössinger-Kalteis, Z. Major, Experimental characterization of 3D printed cellular structures, Mater. Today Proc. 62 (2022) 2528–2532. https://doi.org/10.1016/j.matpr.2022.03.124.
    [116] C. Zhang, T. Li, Q. Deng, X. Li, Compression Behavior of 3D Printed Polymer TPU Cubic Lattice Structure, Mater. Res. 25 (2022) 1–16. https://doi.org/10.1590/1980-5373-mr-2022-0060.
    [117] A. Kumar, L. Collini, C. Ursini, J.-Y. Jeng, Energy Absorption and Stiffness of Thin and Thick-Walled Closed-Cell 3D-Printed Structures Fabricated from a Hyperelastic Soft Polymer, Materials (Basel). 15 (2022) 2441. https://doi.org/10.3390/ma15072441.
    [118] F. Shen, S. Yuan, Y. Guo, B. Zhao, Energy Absorption of Thermoplastic Polyurethane Lattice Structures via 3D Printing : Modeling and Prediction, 8 (2016) 1–13. https://doi.org/10.1142/S1758825116400068.
    [119] M.M. Sychov, L.A. Lebedev, S. V Dyachenko, L.A. Nefedova, Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology, Acta Astronaut. 150 (2018) 81–84. https://doi.org/10.1016/j.actaastro.2017.12.034.
    [120] R. Miralbes, D. Ranz, F.J. Pascual, D. Zouzias, M. Maza, Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct. 0 (2020) 1–15. https://doi.org/10.1080/15376494.2020.1842948.
    [121] N. Kumar, B. Panda, S. Kumar, Thin-Walled Structures Enhanced energy absorption performance of 3D printed 2D auxetic lattices, Thin-Walled Struct. 186 (2023) 110650. https://doi.org/10.1016/j.tws.2023.110650.
    [122] S. Al Hassanieh, A. Alhantoobi, K.A. Khan, M.A. Khan, Mechanical properties and energy absorption characteristics of additively manufactured lightweight novel re-entrant plate-based lattice structures, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13223882.
    [123] S. Gohar, G. Hussain, M. Ilyas, A. Ali, Performance of 3D printed topologically optimized novel auxetic structures under compressive loading: experimental and FE analyses, J. Mater. Res. Technol. 15 (2021) 394–408. https://doi.org/10.1016/j.jmrt.2021.07.149.

    無法下載圖示 全文公開日期 2029/01/24 (校內網路)
    全文公開日期 2029/01/24 (校外網路)
    全文公開日期 2029/01/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE