簡易檢索 / 詳目顯示

研究生: 劉元榮
Yuan-Jung Liu
論文名稱: 尺寸效應及軋延方向對鈹銅機械性質之影響
The Effects of Size and Rolling Direction on the Mechanical Properties of Beryllium Copper
指導教授: 李維楨
Wei-chen Lee
口試委員: 王朝正
Chaur-Jeng Wang
陳復國
Fuh-Kuo Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 138
中文關鍵詞: 鈹銅尺寸效應軋延方向降伏強度楊氏模數
外文關鍵詞: Beryllium Copper, size effect, rolling direction, yield strength, Young’s Modulus
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以鈹銅C17200-25-1/2H(TD02)作為研究對象,探討在晶粒大小相近下,其寬度、厚度或軋延方向改變時,對於降伏強度及楊氏模數之影響。
    研究中以寬度(1.5 mm – 31.0 mm)、厚度(0.05 mm – 0.20 mm)及軋延方向(0° – 90°)作為實驗因子,將實驗規劃分為三個部分。第一部分:相同晶粒大小、厚度及軋延方向下,改變其寬度。第二部分:晶粒大小相近且相同寬度及軋延方向下,改變其厚度。第三部分:晶粒大小相近且相同厚度及寬度下,改變其軋延方向。
    實驗結果發現在第一部分之情況下,寬度由31 mm縮減至1.5 mm後,對其降伏強度及楊氏模數並沒有明顯之差異,因此在寬度31 mm至1.5 mm之範圍內無尺寸效應現象產生。在第二部分,試片厚度由0.20 mm縮減至0.05 mm後,其降伏強度並不會隨著厚度減少而降低,因此在此厚度範圍內無尺寸效應現象,而楊氏模數方面,厚度變化亦不會影響其楊氏模數。在第三部分,試片在軋延方向0°時其降伏強度最大,若以0°方向作為比較基準,當45°方向時,其降伏強度降低約3.4 – 11.7%,90°方向時,降伏強度降低約5.1 – 11.0%。楊氏模數方面,在軋延方向45°時其楊氏模數最小,若以0°方向作比較基準,當45°方向時,楊氏模數降低約3.2 – 12.7%,而0°與90°之楊氏模數無顯著差別。


    The objective of the research is to study the size effects of Beryllium Copper (C17200-25-1/2H(TD02)) on the yield strength and the Young’s Modulus.Three control factors, width (1.5 mm – 31.0 mm), thickness (0.05 mm – 0.20 mm) and direction of rolling (0° – 90°), are selected in the experiment. By changing one factor and fixing the others, the size effects can be studied.
    The experimental results show that the reduction of the width from 31.0 mm to 1.5 mm does not affect the yield strength and the Young’s Modulus. In addition, the reduction of the thickness from 0.20 mm to 0.05 mm does not generate different yield strength, so the size effects are not obvious as well. Lastly, when the angle between the rolling direction and the direction of the specimens in tension is 0°, the maximum yield strength can be obtained. The yield strength decreases 3.4 – 11.7% when the angle is 45° and 5.1 – 11.0% when the angle is 90°. On the other hand, the Young’s Modulus is about the same when the angle is 0° and 90°. It is at the minimum when the angle is 45°.

    目錄 i 圖目錄 iii 表目錄 x 符號表 xvii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.2.1 固定晶粒大小但不同試片尺寸之塑流應力及降伏強度比較 2 1.2.2 固定試片尺寸但不同晶粒大小之塑流應力及降伏強度比較 3 1.2.3 以試片尺寸及晶粒大小比值比較其塑流應力及降伏強度 4 1.2.4 不同軋延方向之塑流應力及降伏強度比較 4 1.2.5 幾何尺寸、晶粒大小及塑流應力之關係 6 1.3研究目的 7 1.4 論文架構 7 第二章 實驗方法 18 2.1 拉伸試驗 18 2.1.1 鈹銅合金之特性 18 2.1.2 實驗之硬體設備規格 18 2.1.3 拉伸試驗參數選用 19 2.1.4 拉伸實驗步驟 20 2.1.5 試片設計及製作 21 2.2 晶粒大小之計算 22 2.2.1 試片之金相實驗 22 2.2.2 晶粒大小之計算方法 23 2.3 實驗分析設計 23 第三章 實驗結果與討論 38 3.1 不同試片寬度下之情況 38 3.1.1 降伏強度之比較 38 3.1.2 楊氏模數之比較 39 3.2 不同試片厚度下之情況 39 3.2.1 降伏強度之比較 39 3.2.2 楊氏模數之比較 40 3.3 不同軋延方向之情況 40 3.3.1降伏強度之比較 40 3.3.2 楊氏模數之比較 41 第四章 結論與未來研究方向 86 4.1 結論 86 參考文獻 89 附錄A 92 附錄B 97 附錄C 108

    [1] U. Engel, R. Eckstein, Microforming – from basic research to its realization, Journal of Materials Processing Technology, Vol. 125 – 126, pp. 35 – 44, 2002.
    [2] R. W. Armstrong, On size effects in ploycrystal plasticity, J. Mech. Phys. Solids 9, pp. 196 – 199, 1961.
    [3] Retrieved 19 Jun. 2007, from http://www.answers.com/topic/flow-stress
    [4] T. B. Kals, R. Eckstein, Miniaturization in sheet metal working, Journal of Materials Processing Technology, Vol. 103, pp. 95 – 101, 2000.
    [5] L. V. Raulea, B. M. Goijaerts, L.E. Govaert, F.P.T Baaijens, Size effect in the processing of thin metal sheet, Journal of Materials Processing Technology, Vol. 115, pp. 44 – 48, 2001.
    [6] J. F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technology, Vol. 141, pp. 439 – 446, 2003.
    [7] E. O. Hall, The deformation and ageing of mild steel: III. Discussion of results, Proceedings of the Physical Society B, Vol. 64, pp. 747 – 753, 1951.
    [8] N. J. Petch, The cleavage strength of polycrystals, Journal of Iron and Steel Institute, Vol. 174, pp. 25 – 28, 1953.
    [9] J. J. Gracio, J. V. Fernandes, Effect of grain size on substructural evolution and plastic behaviour of copper, Materials Science and Engineering, Vol. A118, pp. 97 – 105, 1989.
    [10] K. S. Cheong, E. P. Busso, B. Arsenlis, A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts, International Journal of Plasticity, Vol. 21, pp. 1797 – 1814, 2005.
    [11] T. Takeuchi, Work hardening of copper single crystals with multiple glide orientation, Trans Jpn Ins Metals, Vol. 16, pp. 629 – 640, 1975.
    [12] E. Nakamachi, K. Hiraiwa, H. Morimoto, M. Harimoto, Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification, International Journal of Plasticity, Vol. 16, pp. 1419 – 1441, 2000.
    [13] S. Miyazaki, H. Fujita, H. Hiraoka, Effect of specimen size on the flow stress of rod specimens of polycrystalline Cu-Al alloy, Scripta METALLURGICA, Vol. 13, pp. 447 – 449, 1979.
    [14] P. J. M. Janssen, Th. H. de Keijser, M. G. D. Geers, An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness, Materials Science and Engineering, Vol. A419, pp. 238 – 248, 2006.
    [15] W. Leong, S. Nourbakhsh, Tensile behavior of cold rolled α– brass, Scripta METALLURGICA, Vol. 23, pp. 1011 – 1014, 1989.
    [16] F. Stachowicz, Effects of microstructure on the mechanical properties and limit strains in uniaxial and biaxial stretching, Journal of Mechanical Working Technology, Vol. 19, pp. 305 – 317, 1989.
    [17] D. J. Jensen, N. Hansen, Flow stress anisotropy in aluminium, Acta metall, mater, Vol. 38, No. 8, pp. 1369 – 1380, 1990.
    [18] F. Li, P. S. Bate, Strain path change effects in cube textured aluminium sheet, Acta metall, mater, Vol. 39, No. 11, pp. 2639 – 2650, 1991.
    [19] E. T. Harpell, M. J. Worswick, M. Finn, M. Jain, P. Martin, Numerical prediction of the limiting draw ratio for aluminum alloy sheet, Journal of Materials Processing Technology, Vol. 100, pp. 131 – 141, 2000.
    [20] M. P. Miller, N. R. Barton, Representing the effect of crystallographic texture on the anisotropic performance behavior of rolled aluminum plate, Journal of Engineering Materials and Technology, Vol. 122, pp. 10 – 17, 2000.
    [21] B. C. Lopes, F. Barlat, J. J. Gracio, J. F. Ferreira Duarte, E. F. Rauch, Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear, International Journal of Plasticity, Vol. 19, pp. 1 – 22, 2003.
    [22] Z. J. Li, G. Winther, N. Hansen, Anisotropy of plastic deformation in rolled aluminum, Materials Science and Engineering, Vol. A387 – 389, pp. 199 – 202, 2004.
    [23] J. Bohlen, M. R. Nürnberg, J. W. Senn, D. Letzig, S. R. Agnew, The texture and anisotropy of magnesium – zinc – rare earth alloy sheets, Acta Materialia, Vol. 55, pp. 2101 – 2112, 2007.
    [24] S. Miyazaki, K. Shibata, H. Fujita, Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes, Acta Metall, Vol. 27, pp. 855 – 862, 1979.
    [25] 董超群,鈹銅合金熔鑄工藝及設備的發展,寧夏工程技術,第3卷第1期,第93頁,2004年。
    [26] ASTM E 8M-01ε2, Standard test methods for tension testing of metallic materials [Metric]1, 2003.
    [27] ASTM E 345-93, Standard test methods of tension testing of metallic foil, 2003.
    [28] ASM Handbook, Vol.8: Mechanical Testing, 2001.

    無法下載圖示 全文公開日期 2012/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE