簡易檢索 / 詳目顯示

研究生: 許子晨
Tzu-Chen Hsu
論文名稱: 希爾伯特-黃即時頻譜分析於原子力顯微鏡回授應用之研究
Hilbert-Huang Instantaneous Frequency Analysis Application on Atomic Force Microscopy Feedback Loop
指導教授: 張以全
I-Tsyuen Chang
口試委員: 林紀穎
Chi-Ying Lin
劉孟昆
Meng-Kun Liu
田維欣
Wei-Hsin Tien
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 原子力顯微鏡系統識別比例積分控制器帶拒濾波器希爾伯特-黃轉換
外文關鍵詞: atomic force microscope, system identification, PI controller, band-rejection filter, Hilbert Huang transform
相關次數: 點閱:213下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文對原子力顯微鏡做控制器設計並進行訊號處理。在文中,首先介紹原 子力顯微鏡的系統架構以及操作模式,接著提出利用MATLAB/SIMULINK 模擬 出原子力顯微鏡的系統。此外,並設計出傳統比例-積分控制器與藉由系統識別而 設計出的帶拒濾波器來對原子力顯微鏡的壓電掃描器進行定位控制。最後,利用 希爾伯特黃轉換對探針的運動訊號進行分析,計算出探針運動的瞬時頻率。發現 藉由瞬時頻率,可以反推出掃描樣本的高度。由此關係可以改用頻率進行回授, 並由此凸顯表面變化,保持AFM靈敏度,最終加快AFM掃描速度。


This thesis proposes the controller design and the signal processing on the atomic force microscope. In this thesis, first, the structure and the operating mode of the atomic force microscope system. Next, the entire model of this research is de- veloped and simulated by using MATLAB/SIMULINK , In addition, the traditional PI controller and the band-rejection filter designed by the system identification are designed and utilized to control the z piezoelectric scanner position. Finally, Hilbert Huang transform is used to analyze the motion signal of the tip and caculate the instantaneous frequency of the motion signal. We found that with the instantaneous frequency, the height of the scanned sample can be deduced. From the relationship, we can change to use frequency for feedback control and highlight the surface vari- ations,maintain the AFM sensitivity, and ultimately speed up the AFM scanning.

論文摘要 ...................................... I Abstract....................................... II 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI 1介紹....................................... 1 1.1 研究目的 ................................. 1 1.2 原子力顯微鏡............................... 1 1.2.1 探針與懸臂樑........................... 2 1.2.2 光學位移感測器.......................... 3 1.2.3 壓電掃描器 ............................ 4 1.2.4 掃描模式 ............................. 5 1.3 控制器設計 ................................ 6 1.3.1 PID控制器 ............................ 7 1.3.2 帶拒濾波器 ............................ 7 1.4 希爾伯特-黃轉換 ............................. 8 1.4.1 本質模態函數........................... 8 1.4.2 經驗模態分解........................... 9 1.4.3 希爾伯特頻譜........................... 11 1.5 文獻回顧 ................................. 12 1.5.1 AFM控制器............................ 12 1.5.2 AFM應用 ............................. 13 1.5.3 HHT應用 ............................. 14 1.5.4 AFM分析 ............................. 15 2 AFM系統介紹.................................. 18 2.1 懸臂樑與探針............................... 18 2.2 質量彈簧阻尼系統 ............................ 19 2.3 凡得瓦力 ................................. 21 2.4 壓電掃描器................................ 23 2.4.1 XY掃描器............................. 23 2.4.2 Z軸掃描器............................. 25 2.5 AFM振幅計算 .............................. 26 2.6 AFM方塊圖................................ 27 3 控制器設計之模擬架構............................. 28 3.1 系統模擬架構............................... 28 3.1.1 系統參數給定........................... 28 3.1.2 凡得瓦力設定........................... 31 3.1.3 加入凡得瓦力........................... 32 3.1.4 振幅計算 ............................. 34 3.1.5 樣本表面設計........................... 36 3.1.6 SIMULINK架構.......................... 37 3.2 控制器設計 ................................ 41 3.2.1 比例積分控制器.......................... 41 3.2.2 帶拒濾波器 ............................ 43 4 AFM訊號分析.................................. 51 4.1 EMD分析................................. 51 4.2 FFT分析.................................. 57 4.3 EMD進行回授............................... 59 5 結論與未來展望................................. 67 5.1 結論.................................... 67 5.2 未來展望 ................................. 67 參考文獻 ...................................... 70

[1] 維基百科, “原子力顯微鏡—維基百科自由的百科全書.” https: //zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE% E5%BE%AE%E9%95%9C, 2017.
[2] 蔡毓楨, 原子力顯微鏡實作訓練教材. 國家圖書館, 2007.
[3] J. E. Sader, “Susceptibility of atomic force microscope cantilevers to lateral
forces.,” Rev. Sci. Instrum, vol. 74, pp. 2438–2443, 2003.
[4] “原子力顯微鏡基本原理.” http://web1.knvs.tp.edu.tw/AFM/ch2.htm,
2008.
[5] W. L. Ming Yen Lin, Chia-Seng Chang, “An introduction to the principle of
atomic force microscope (i).,” 科儀新知, vol. 27, no. 2, pp. 46–57, 1993.
[6] T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, “Devel- opment of low noise cantilever deflection sensor for multienvironment frequency- modulation atomic force microscopy.,” Rev. Sci. Instrum, vol. 76, 2005.
[7] G. K. Bining and D. Smith, “Single-tube three dimensional scanner for scanning tunneling microscopy.,” Rev. Sci. Instrum, vol. 58, pp. 1688–1689, 1986.
[8] D. Y. Abramovitch, S. B. Andersson, L. Y. Pao, and G. Schitter, “A tutorial on the mechanisms, dynamics, and control of atomic force microscopes,” in American Control Conference, 2007. ACC’07, pp. 3488–3502, IEEE, 2007.
[9] 維基百科, “Pid控制器— 維基百科自由的百科全書.” https://zh.wikipedia. org/wiki/PID%E6%8E%A7%E5%88%B6%E5%99%A8, 2018.
[10] E. C. Jones and C. D. Cowan, “Introduction to filter theory.,” IEEE Transac- tions on Education, vol. 21, pp. 75–76, 1978.
[11] 陳 明 周, “主 動 式 濾 波 器 簡 介.” http://designer.mech.yzu.edu.tw/ articlesystem/article/compressedfile/(2002-09-24)%20%E4%B8%BB%E5% 8B%95%E5%BC%8F%E6%BF%BE%E6%B3%A2%E5%99%A8%E7%B0%A1%E4%BB%8B.aspx? ArchID=455, 2002.
[12] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995, The Royal Society, 1998.
[13] G. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” IEEE-EURASIP workshop on nonlinear signal and image processing, 2003.
[14] wikipedia, “Hilbert spectrum—from wikipedia, the free encyclopedia.” https: //en.wikipedia.org/wiki/Hilbert_spectrum, 2018.
[15] G. Y. G. M. J. Yang, C. X. Li and L. M. Zhu, “Improving scanning speed of the afms with inversion-based feedforward control,” in Manipulation, Manufactur- ing and Measurement on the Nanoscale (3M-NANO), 2014, IEEE International Conference on, IEEE, 2014.
[16] M. W. F. M. G. Ruppert and S. . R. Moheimani, “Multi-mode resonant con- trol of a microcantilever for atomic force microscopy,” in Advanced Intelligent Mechatronics, 2014, IEEE/ASME International Conference on, IEEE, 2013.
[17] W. Y. Qi Ningning, F. Yongchun and Y. Wenbin, “A 2dof control of an afm sys- tem based on an improved p-i model,” in 2016 35th Chinese Control Conference (CCC), IEEE, 2016.
[18] S. H. Y. W. L. Hu, S. K. Hung and L. C. Fu, “Design and control of tapping mode atomic force microscope in liquid utilizing optical pickup system,” in 2009 7th Asian Control Conference, IEEE, 2009.
[19] 蕭名智, “Dna於afm影像以形狀數在碼之長度估測器,” 碩士論文, 國立台灣科 技大學機械工程研究所, 2016.
[20] D. S. H. H. Xie, J. Vitard and S. Reginier, “Enhanced accuacy of force appli- cation for afm nanomanipulation using nonlinear calibration of optical levers,” in IEEE Sensors Journal, vol. 8, pp. 1478–1485, 2008.
[21] A. Bonyar, “Application of localization factor for the detection of tin oxida- tion with afm,” in 2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME), IEEE, 2015.
[22] A. Bonyar, “Application of afm microscope as a nanolithography tool,” in
2010 International Students and Young Scientists Workshop ”Photonics and Microsystems, IEEE, 2010.
[23] 林澂, “應用希爾伯特黃轉換於探究非線性生醫訊號特徵,” 碩士論文, 國立中 央大學系統生物與生物資訊研究所, 2012.
[24] 林耕宏, “應用希爾伯特黃轉換於功能性磁振造影之非穩態信號分析,” 碩士論 文, 國立中央大學生物醫學工程研究所, 2013.
[25] 陳宏嘉, “利用經驗模態分解法(emd)探討潮汐效應對地震活動的影響,” 碩士 論文, 國立中央大學地球物理研究所, 2010.
[26] B. Voigtlander, “Amplitude modulation (am) mode in dynamic atomic force microscopy,” in Scanning Probe Microscopy,NanoScience and Technology, Springer-Verlag Berlin Heidelberg, 2015.
[27] W.-R. W. Shueei-Muh Lin, Chihng-Tsung Liauh and S.-H. Ho, “Analytical solutions of the frequency shifts of several modes in afm scanning an inclined surface, subjected to the lennard-jones force,” International Journal of Solids and Structures, vol. 44, no. 2, pp. 799–810, 2007.
[28] D. R. S. Abu Sebastian and M. V.Salapaka, “An observer based sample detec- tion scheme for atomic force microscopy,” in Decision and Control, 2003, 42nd IEEE International Conference on, IEEE, 2003.
[29] A. S. Deepak R. Sahoo and M. V. Salapakan, “Harnessing the transient signals in atomic force microscopy,” International Journal of Robust and Nonlinear Control, vol. 15, no. 2, pp. 805–820, 2005.
[30] 楊證民, “提升超音波精密加工之變幅桿穩定度研究,” 碩士論文, 國立台灣科 技大學機械工程研究所, 2011.
[31] M. Tsukadaa, N. Sasakia, R. Yamuraa, N. Satoa, and K. Abeb, “Features of cantilever motion in dynamic-mode afm,” in Surface Science, vol. 401, pp. 355– 363, 1998.
[32] 維基百科, “凡得瓦力—維基百科自由的百科全書.” https://zh.wikipedia. org/wiki/%E8%8C%83%E5%BE%B7%E5%8D%8E%E5%8A%9B, 2017.
[33] “分子間作用力.” https://www.ch.ntu.edu.tw/~gcuni90/lifesci/bullte/ interaction.htm, 2010.
[34] R. W. Stark, G. Schitter, and A. Stemmer, “Tuning the interaction forces in tap- ping mode atomic force microscopy.,” Physical Review B, vol. 68, pp. 085401–1– 085401–5, 2003.
[35] D. Sarid in Scanning Force Microscopy:With Applications to Electric,Magnetic, and Atomic Forces., Oxford U. Pr., 1994.
[36] J. N. Israelachvili in Intermolecular and Surface Forces, Academic Press, 2011.
[37] B. Voigtlander, “Amplitude modulation (am) mode in dynamic atomic force microscopy,” in Scanning Probe Microscopy,NanoScience and Technology, pp. 187–204, Springer-Verlag Berlin Heidelberg, 2015.
[38] A. Research, “Mfp-3d atomic force mi- croscope controller – fully digital, fast, low noise for high performance.” www.asylum.com, 2004.
[39] L. Y. Pao, J. A. Butterworth, and D. Y. Abramovitch, “Combined feedfor- ward/feedback control of atomic force microscopes,” in Proc.Amer. Ctrl. Conf., 2007.
[40] T. Ando, T. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, “A high- speed atomic force microscope for studying biological macromolecules,” PNAS, vol. 98, pp. 12468–12472, 2001.
[41] G. Schitter, K. J. A. stro m, B. DeMartini, G. E. Fantner, K. Turner, P. J. Thurner, and P. K. Hansma, “Design and modeling of a high- speed scanner for atomic force microscopy,,” in Proc. Amer. Ctrl.Conf., pp. 502–507, (Min- neapolis, MN), 2006.
[42] V. Instruments, “The new nanoscope v con- troller: New power and capabilites for multimode v, dimension v,nanoman vs and picoforce.” http://www.veeco. com, 2006.
[43] J. Mulder, A. V. der Woerd, W. Serdijn, and A. V. Roermund, “An rms-dc converter based on the dynamic translinear principle,” IEEE Journal of Solid- State Circuits, vol. 32, pp. 1146–1150, 1997.
[44] J. Scofield, “Frequency-domain description of a lock-in amplifier,” American journal of physics, pp. 129–133, 1994.
[45] H. Wang and M. L. Gee, “Afm lateral force calibration for an integrated probe using a calibration grating,” IUltramicroscopy, vol. 136, pp. 193–200, 2014.

QR CODE