簡易檢索 / 詳目顯示

研究生: 高權杰
Chuan-Chieh Kao
論文名稱: 以電化學原子力顯微鏡即時觀察T91鍋爐用鋼之表面腐蝕研究
The In-Situ corrosion study of T91 at controlled potential using electrochemical atomic force microscopy
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 王朝正
Chaur-Jeng Wang
鄭偉鈞
Wei-chun Cheng
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 108
中文關鍵詞: 電化學原子力顯微鏡(ECAFM)T91 原材T91 銲道材孔蝕生成物
外文關鍵詞: ECAFM, T91 alloy, T91 weld, pitting, crystalline
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電化學原子力顯微鏡(ECAFM)於0.001 M NaCl(aq)環境中即時(In-Situ)觀察T91 原材及T91 銲道材的腐蝕現象。此外並再利用恆電位儀,測量T91 原材及T91 銲道材之開路電位及腐蝕行為,並利用掃瞄式電子顯微鏡(SEM)及EDX 分析試片表面之腐蝕情況及孔蝕(Pitting)氧化物成份。
    原子力顯微鏡可以即時觀察T91 原材及T91 銲道材於0.001 M NaCl(aq) 環境中的過程,可觀察出試片表面的生成物組成大小及電流-電位的變化。經由電化學原子力顯微鏡以及不同的電位試驗條件在試片表面掃描後,根據實驗數據所示,可發現T91 原材的抗腐蝕性比T91 銲道材佳。


    The electrochemical atomic force microscopy (ECAFM) has been dispatched to investigate the in-situ corrosion phenomena of the T91 alloy and T91 weld alloy in 0.001 M NaCl(aq) solution. A potentialstate is also used to analyze the corrosion voltage and corrosion pits of T91 alloy and T91 weld alloy. The pits phases of the corrosion products were examined by an SEM and X-ray diffractometer.
    ECAFM can perfrom status of In-Situ corrosion in each conditions From CV(Cyclic voltammogram)curves can figure out anti-corrosion capability of T91 alloy and T91 weld alloy, base on experiment result shown anti-corrosion of T91 alloy is better than T91 weld alloy.

    第一章 前言1 第二章 文獻回顧3 2.1 腐蝕應用3 2.2 腐蝕定義3 2.3 腐蝕型式6 2.4 腐蝕反應機構8 2.4.1 穿孔腐蝕(Pitting corrosion) 8 2.4.2 間隙腐蝕(Crevice corrosion) 10 2.4.3 應力腐蝕(SC)與應力腐蝕破裂(SCC) 11 2.4.4 選擇性侵蝕(selective leaching) 14 2.5 腐蝕測試方法14 2.6 腐蝕與電化學腐蝕16 2.7 熱力學與電極電位18 2.7.1 自由能(Gibbs free energy) 18 2.7.2 電極電位與電動勢19 2.7.3 參考電極20 2.8 腐蝕動力學20 2.8.1 電化學極化21 2.8.2 混合電位理論24 2.8.3 腐蝕電位與腐蝕電流24 2.8.4 腐蝕速率的量測26 2.9 原子力顯微鏡(Atomic Force Microscope)之介紹26 2.9.1 基本原理26 2.9.2 掃描方式29 2.9.3 综合比較35 2.10 電化學原子力顯微鏡(ECAFM)相關文獻探討37 第三章實驗方法40 3.1 實驗流程40 3.2 實驗材料與試片準備41 3.3 測試條件41 3.4 實驗分析設備與技術41 3.5 電化學實驗42 3.6 原子力顯微鏡分析44 3.7 微觀結構及晶相分析46 3.7.1 腐蝕型態金相觀察(OM) 46 3.7.2 電子顯微鏡觀察(SEM) 46 第四章 結果與討論47 4.1 試片成份分析及金相組織47 4.2 恆電位儀電化學實驗51 4.2.1 開路電位對時間曲線51 4.2.2 動電位極化曲線(Potentiodynamic) 52 4.2.3 SEM-EDS 觀察54 4.3 原子力顯微鏡試驗57 4.3.1 開路電位測試57 4.3.2 陽極定電位測試59 4.3.3 循環電位測試63 4.3.4 循環電位測試(OCP+/- 1.5 V) 68 4.3.5 循環電位測試(加減 1.5 V)後之EDS 分析結果69 4.4 恆電位儀與電化學原子力顯微鏡之比較75 4.4.1 恆電位儀與原子力顯微鏡數據之分析76 第五章 結論77 參考文獻78 附錄86

    1. 李志偉,”以電化學原子力顯微鏡進行氮化鉻薄膜即時腐蝕行為之研究”,中國材料科學學會,台灣,台南,10 . 21-22, 2003。
    2. 李志偉、陳弘凱、陳凡孜、杜正恭、黃仁清,“以電化學原子力顯微鏡(ECAFM)進行420 不銹鋼於氯化鈉水溶液之即時腐蝕行為研究",中華民國防蝕工程學會,台灣,南投,pp. 451-466, 10 . 26-29, 2004。
    3. N. G. Fontana and N. D. Greene, "Corrosion Engineering", 3rd edition,
    McGraw-Hill (1986).
    4. 柯賢文, "腐蝕及其防制",全華科技圖書股份有限公司(台灣,台北,1995)。
    5. H. Cho, G. Sakai, K. Shimanoe and N. Yamazoe, “Behavior of oxygen concentration cells using BiCuVOx oxide-ion conductor,Sensors and Actuators B 108 pp. 335-340 (2005).
    6. 李志偉、江景昇、王朝正, "黃銅於原子力顯微鏡接觸式量測模式造成之應力腐蝕",九十五年度防蝕工程年會暨學術研討會,台灣,台南,8 . 17-18, 2006。
    7. H. Lu, K. G. ,and W. Chu, “Determination of tensile stress induced by dezincification layer during corrosion for brass.”, Corrosion Science,Vol. 40,No. 10, pp. 1633-1670 (1998).
    8. G. Biao, Z. Jingwu ,and W. Farong, “In situ TEM observation of dislocation emission, motion induced by anodic dissolution and the initiation of SCC in brass thin foil”, Acta Metal. Sin., 31(4), pp. A156-164 (1995).
    9. D. A. Jones, “ Principles and Prevention of Corrosion 2nd ed. ”,Prentice Hall International, Inc., pp.235-244 (1997).
    10. T. Lombardi and O. G. Jr, “Biological leaching of Mn, Al, Zn, Cu, and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning”, Water Research 36, 95 pp. 3193-3202 (2002).
    11. Akcil and H Ciftci, “A study of the Selective leaching of complex sulphides from the Eastern Black Sea Region, Turkey”, Minerals Engineering 15, pp. 457-459 (2002).
    12. Y. K. Chang, J. E. Chang ,and L. C. Chiang, “Leaching behavior and chemical stability of copper buty1 xanthate complex under acidic condition”, Chemosphere 52, pp. 1089-1094 (2003).
    13. Y. Y. Su, Wire Journal Internal, pp. 106-113(1998).
    14. D. O. Sprowls, "Corrosion" Metals Handbook Vol.13, pp. 204-227(1988).
    15. Z. Wu, Z. Zhang and L. Liu, “Electrochemical studies of a Cu(II)- Cu(III) couple: Cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presence of periodate anions.”, Electrochemica Acta, Vol. 42, No. 17, pp. 2719-2723 (1997).
    16. A. Vaskelis, R. Juskenas ,and J. Jaciauskiene, “Copper hydride formation in the electroless copper plating process: in situ X-ray diffraction evidence and electrochemical study”, Electrochemica Acta, Vol. 43, No. 9, pp. 1061-1066 (1998).
    17. M. G. Fontana, Corrosion Engineering, 3rd edition, pp. 688-697.
    18. M. C. Baykul, “Preparation of shape gold tips for STM by using electrochemical etching method”, Materials Science and Engineer B74, pp. 229-233 (2000).
    19. M. Koinuma and K. Uosaki, “AFM tip induced selective electrochemical etching of and metal deposition on p-GaAs(100) surface”, Surface Science 357-358, pp. 565-570 (1996).
    20. J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow and P. Marcus, “In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions.”, Electrochemica Acta 48, pp. 1157-1167 (2003).
    21. A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot ,and W. G. Proud, 80“Electrochemical studies of copper, copper-aluminum and copperaluminum- silver”, Electrochemica Acta, Vol. 40, No. 16, pp. 2657-2668 (1995).
    22. Y. Tomita, Y. Hasegawa and K. Kobayashi, “Nano-scale Cu metal patterning by using an atomic force microscope”, Applied Surface Science 244, pp. 107-110 (2005).
    23. 張錦泉,“鋁合金應力腐蝕及電化行為之影響”,國立台灣大學材料科學與工程學研究所博士學位論文(台灣.台北,1998)。
    24. Haynes and Baboian, “Laboratory Corrosion Test and Standards”, ASTM Special Technical Publication; 866, pp. 69. (Texas Instruments, Incorporate, USA, 1983).
    25. 任頌讚, "鋼鐵金相圖譜",滬科文獻出版社(台灣,台北,2003)。
    26. 王效杰," T91 鋼銲接性試驗及其應用"。焊接研究與生產. pp. 31-34, 1996.
    27. S. Liang, L. J. Qiao ,and W. Y. Chu, “AFM study of local plasticity enhanced by stress corrosion”, Materials Letter 57, pp. 1135-1141 (2003).
    28. B. S. Phull, S. J. Pikul ,and R. M. Kain, “Seawater Corrosivity Around the World: Result from Five Years of Testing”, Corrosion Testing in Natural Water: second Volume, ASTM STP 1300 (1997).
    29. 黃仁清、李志偉、蔡世鴻、許嘉倫、鄭云涵,“應用輕敲式AFM 於SK3碳鋼在水中的即時微觀氧化現象探討”, 中國機械工程學會第21 屆全國學術研討會(高雄, 11. 26-27, 2004)。
    30. K. W. Gao, W. Y. Chu, H. L. Li, Y. P. Liu ,and L. J. Qiao, “Correspondence between hydrogen enhancing dezincification layer-induced stress and susceptibility to SCC of brass”,Material Science and Engineering A 371, pp. 51-56 (2004).
    31. 郭興蓬、屈鈞娥,“AFM 探針刮擦誘導金屬加速溶解行為及緩蝕劑抑制效果的研究”,中華民國防蝕工程學會. pp. 1387-1392 台灣,南投,81 10.26-29, 2004.
    32. G Bertrand, “In-situ electrochemical atomic force microscopy studies of aqueous corrosion and inhibition of copper”, Journal of Electroanalytical Chemistry 489, pp. 38–45 (2000).
    33. Rongguang Wang, “An AFM and XPS study of corrosion caused by microliquid of dilute sulfuric acid on stainless steel”, Applied Surface Science 227, pp.399–409 (2004).
    34. Williford, C.F. Windisch and R.H. Jones, “In situ observations of the early stages of localized corrosion in Type 304 SS using the electrochemical atomic force microscope”, Materials Science and Engineering A288, pp. 54–60(2000).
    35. K. Kubo, “In situ observation on Au(1 0 0) surface in molten EMImBF4 by electrochemical atomic force microscopy (EC-AFM)”, Surface Science 546, pp. 785–788 (2003).
    36. E. Rocca, G. Bertrand, C. Rapina and J.C. Labrune, “Inhibition of copper aqueous corrosion by non-toxic linear sodium heptanoate: mechanism and ECAFM study”, Journal of Electroanalytical Chemistry 503, pp. 133–140 (2001).
    37. Ryo Mogi, Minoru Inaba, Yasutoshi Iriyama, Takeshi Abe, Zempachi Ogumi, “In Situ Atomic Force Microscopy Study on Lithium Deposition on Nickel Substrates at Elevated Temperatures”, Journal of The Electrochemical Society, 149 ~(4) A385-A390 , 2002.
    38. Jerzy Zak, Magdalena Kolodziej-Sadlok, “AFM imaging of copper stripping: deposition processes in selected electrolytes on boron-doped diamond thin-film electrodes”, Electrochimica Acta 45 2803–2813 (2000).
    39. K. Fujikawa, H. S. Jung, J.W.Park, J. M. Kim, H. Y. Lee, and T. Kawai,“AFM imaging of nanostructure polypyrrole doughnuts shapes fabricated by direct electrochemical oxidation”, Electrochemistry Communications 461–464 (2004).
    40. H. Bloe, G. Staikov and J. W. Schultze, “AFM induced formation of SiO2 structures in the electrochemical Nanocell”, Electrochimica Acta 47, pp. 335–344 (2001).
    41. Linlin Chen, Daniel Guay, F H Pollak, F Lévy, “AFM observation of surface activation of ruthenium oxide electodes during hydrogen evolution”, Journal of electroanalytical chemistry 429, pp. 185-192, (1997).
    42. Soon-Ki Jeong, Minoru Inaba, Yasutoshi Iriyama, Takeshi Abe and Zempachi Ogumi, “AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries”, Journal of Power Sources 119–121 555–560 (2003).
    43. Jing Li, Dale J. Meier, “An AFM study of the properties of passive films on iron surfaces”, Journal of Electroanalytical Chemistry 454(1998), pp. 53-58.
    44. M. Koinuma and K. Uosaki, “An electrochemical AFM study on electrodeposition of copper on p-GaAs(100) surface in HCl solution”, 6th International Fischer Symposium on Nanotechniques in Electeochemistry, 1345-1351(1995).
    45. T. Müllera, M. Brandlb, O. Branda and H. Baltesa, “An industrial CMOS process family adapted for the fabrication of smart silicon sensors”, Journal of Power Sources , Pages 126-133(2000).
    46. Simon Floatea, Michael Hydea and Richard G Compton, “Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: ananalysis of the effect of ultrasound”, Journal of Electroanalytical Chemistry 523, 49–63 (2002).
    47. Darko Grujicica and Batric Pesic, “Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions”, Electrochimica Acta 49, 4719–4732 (2004).
    48. U. Kamachi Mudali, Y. Katada, Electrochimica Acta 463735(2001).
    49. 吳宗儒、黃炳照及何國川,”以原子顯微鏡研究在高方向性石磨基材上電化學聚合苯胺之成核與成長”,國立台灣工業技術學院,化學工程技術學系,碩士論文(1996)。
    50. Ana Maria Oliveira-Brett, Ana-Maria Chiorcea, “Anodic voltammetry and AFM imaging of picomoles of adriamycin adsorbed onto carbon surfaces”, Journal of Electroanalytical Chemistry 538-539, 267-276(2002).
    51. 王朝正、李志偉、高景海, “Proceeding of the 1995 Annual Conference of the Corrosion Engineering Association of the Republic of China”, pp.101-108, (1995).
    52. Yoshiki Hirata, Soichi Yabuki ,Fumio Mizutani, “Application of integrated SECM ultra-micro-electrode and AFM force probe to biosensor surfaces”, Bioelectrochemistry 63, 217– 224(2004).
    53. G.P Bierwagena, Rebecca Twitea, G Chenb and D.E Tallman, “Atomic force microscopy, scanning electron microscopy and electrochemical characterization of Al”, Elsevier Science, Pages 25-30(1997).
    54. Valérie Peulon, Gérard Barbey, Jean-Marc Valleton and Stéphane Alexandre,“Electrochemical and structural studies of polyselenienyl thiophene nucleation”, Elsevier Science, Pages 15-19(1995).
    55. Eve F Fabrizio, Todd M McEvoy, Priya Jassel, Jose Lozano, Keith JStevenson, Allen J Bard, “Electrochemical and surface characterization of platinum silicide electrodes and their use as stable platforms for electrogenerated chemiluminescence assays”, Electrochimica Acta 46 3735–3742(2001).
    56. J. Chem. Soc, Dalton Trans, “Electrochemical behavior of hexaammineruthenium( III) cations in clay-modified electrodes prepare”, Journal of the Chemical Society, 222– 224(2005).
    57. J. W. Schultze, V. Tsakova, “Electrochemical microsystem technologies: from fundamental research to technical systems”, Elsevier Science, Pages 3605-3627(1999).
    58. J. Li and D. Lampner, “In-situ AFM study of pitting corrosion of Cu thin films”, Colloids and Surface A: Physicochemical and Engineer Aspects 154 pp. 227-237 (1999).
    59. R. E. R. Hill, “Physical Metallurgy Principles”, 3rd Ed., (PWS Publishing Company, USA), pp. 11-33(1991).
    60. 李志偉、江景昇、黃仁清、王朝正,”以原子力顯微鏡進行銅合金腐蝕
    現象之即時觀察研究”,九十四年度防蝕工程年會暨學術研討會. 第720~729 頁(2005)。
    61. Jyh-Wei Lee, Yi-Chia Liao, Jen-Ching Huang, San-Der Chyou, Chun-Chen Yang, “Corrosion behaviors of boiler steel T91 investigated by in situ electrochemical AFM in aqueous solution”, The Electrochemical Society. pp. 2151-2043(2010).
    62. CNS C1152100 不銹鋼之陽極極化曲線測定法, G2262,台灣(1986)。
    63. American Society for Testing and Materials, “Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements-Designation: G 59 – 97”, Annual Book of ASTM Standards, 2001.
    64. U. Kamachi Mudali and Y.Katada, ”Electrochemical atomic force microscopic studies on passive”. films of nitrogen-bearing austenitic stainless steels. lectrochimica Acta 46 3735–3742 (2001).
    65. Yan Li, Ronggang Hu, JingrunWang, Yongxia Huang, Chang-Jian Lin,“Corrosion initiation of stainless steel in HCl solution studied using electrochemical noise and in-situ atomic force microscope”, Pages 7134-7140, 2009.
    66. Jing Li, Dale J. Meier, “An AFM study of the properties of passive films on iron surfaces”. Journal of Electroanalytical Chemistry 454 53–58 (1998).
    67. A.C. Cascalheira, A.S. Viana, L.M. Abrantes,”In situ atomic force microscopy investigation of copper behaviour and polypyrrole deposition from salicylate medium”. Electrochimica Acta 53 5783–5788(2008).
    68. Norihito Ikemiya, Toshikazu Kubo, Shigeta Hara, ”In Situ AFM observations of oxide film formation on Cu(111) and Cu(100) surface under aqueous alkaline solutions”, Surface science 323, 81-90(1995).

    無法下載圖示 全文公開日期 2016/06/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE