簡易檢索 / 詳目顯示

研究生: 林世偉
Shi-wei Lin
論文名稱: 基於自調式類神經控制器之原子力顯微鏡探針量測系統
The Atomic Force Microscope Probe Measurement System based on Self-Tuning Neuro Controller
指導教授: 郭中豐
Chung-feng Kuo
口試委員: 黃昌群
none
張嘉德
none
曾安培
none
江茂雄
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 79
中文關鍵詞: 原子力顯微鏡類神經網路根軌跡漢米頓定理
外文關鍵詞: hamilton's principle, genetic alogorithms
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在將類神經網路應用於原子力顯微鏡探針系統的控制器參數調整,期望能改善以往需要人工以經驗或試誤法調整的方式,以能減少參數調整的時間以及增加系統控制上的精確度為目標。首先由漢米頓定理(Hamilton’s principle)推導出系統動態方程式,經由拉普拉斯轉換(Laplace transform)求出系統的開迴路轉移函數,利用將致動器與感測器置於相同位置的共點控制,系統的極零點會呈現相互交錯的分佈特性,藉由根軌跡法(Root locus method)分析設計系統控制器。結果顯示比例微分控制器能將系統穩定且具有不產生最大超越量的性能,而採用類神經網路作為參數調整的自調式類神經比例微分控制器除了具有上述優點之外,亦能減少系統的安定時間,有效的提升系統性能。


    The objective of this thesis is to use neural network for tuning the controller parameters of the atomic force microscopy probe measurement system, with the aim to improve the traditional approach, which replies on experiences and trial-and-error in industrial application. In this thesis, an improved neuro-PD controller is provided to reduce the time in tuning parameters and increase the precision of the control system. First, the dynamic equations of this system are derived based on Hamilton’s principle, and the open loop transfer function is obtained by using the Laplace transform. The poles and zeros of system have the characteristic of interlace due to collocated control. Moreover, this system can be analyzed and designed by using the root locus method. The computer simulate results show that the PD controller can stabilize the system and reduce the overshoot. Also, the self-tuning neuro-PD controller not only has this advantage but also can reduce the settling time of the system, and effectively enhance the system performance.

    摘要……………………………………………………...I Abstract………………………………………………………………….II 誌謝……………………………………………………………………..III 目錄…………………………………………………………………..…IV 圖索引….................................................................................................VII 表索引…………………………………………………………………..IX 第1章 緒論……..…………………………………….……………….1 1.1 前言……....……..…………………………………………….1 1.2 研究動機與目的……..……………………………………….3 1.3 文獻回顧……..…....………………………………………….4 1.4 研究步驟……....……..……………………………………….6 第2章 原子力顯微鏡探針物理模型分析…....………………………7 2.1 引言……………....…………………………………………...7 2.2 模型建立……........…………………………………………...7 2.3 原子力顯微鏡探針運動方程式推導………....……………...9 2.4 探針與樣品間的作用力…......……..……………………….11 2.5 特徵值與特徵函數………..……………..………………….15 2.6 原子力顯微鏡探針之轉移函數……..…..………………….23 2.7 模態加總法…......……………..…………………………….28 第3章 控制器系統設計與分析….………….………………………31 3.1 控制理論推導……………………………………………….31 3.2 穩定性分析………………………………………………….34 3.3 控制器設計………………………………………………….38 3.3.1 比例(P)控制器…………………..……………...……..38 3.3.2 比例-微分(PD)控制器…………...……..……………..41 第4章 類神經網路理論與控制…..…………………………………44 4.1 類神經網路理論………..…………………………………...44 4.2 生物神經元模型………..…………………………………...45 4.3 人工神經元模型…..………………………………………...46 4.4 類神經網路架構…..………………………………………...49 4.5 倒傳遞類神經網路……..…………………………………...51 4.6 基於倒傳遞類神經網路的比例-積分-微分(PID)控制器….54 4.6.1 PID控制原理……………………………………….…55 4.6.2 自調式類神經PID控制器………..…………….….....56 4.7 原子力顯微鏡探針系統自調式類神經PD控制器設計.......60 第5章 模擬結果與討論…………...….……………………………...62 5.1 系統加入比例控制器………………….……………………62 5.1.1 模態數 (N=1)…..…………...…………………...……63 5.1.2 模態數 (N=2)…..……………..………………………64 5.1.3 模態數 (N=10)……..…………..……………………..65 5.2 系統加入比例微分控制器……..……….……………………66 5.2.1 模態數 (N=1)..……..…………………………………66 5.2.2 模態數 (N=2)…....……………………………………67 5.2.3 模態數 (N=10)..…..…………………………………..68 5.3 系統加入類神經自調式PD控制器…………….………….69 5.3.1 模態數 (N=10)…….....……………………………….70 第6章 結論與未來研究方向………..………………………………73 6.1 結論………....…………………………………………….…73 6.2 未來研究方向建議………....……………………………….74 參考文獻………………………………………………………………..75

    [1] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies Byscanning Tunneling Microscopy”, Phy. Rev. Vol. 49, pp. 57-61, 1982.

    [2] M. Ashhab, M. V. Salapaka, M. Dahleh, and I. Mezic, “Dynamical Analysis and Control of Microcantilevers”, Automatica, Vol. 35, pp. 1663-1670, 1999.

    [3] O. M. E. Rifai, and Y. T. Kamal, “Dynamic of Contact-Mode Atomic Force Microscopes”, Proceedings of the American Control Conference, June, 2000.

    [4] O. M. E. Rifai, and Y. T. Kamal, “Dynamic of Atomic Force Microscopes: Experiments and Simulations”, IEEE International Conference on Control Applications, pp. 1126-1131, 2002.

    [5] N. Sasaki, M. Tsukada, R. Tamura, K. Abe, and N. Sato, “Dynamic of the Cantilever in Noncontact Atomic Force Microscopy”, Applied Physics A: Materials, Vol. 66, pp. 287-291, 1998.

    [6] R. F. Fung, and S. C. Huang, “Dynamic Modeling and Vibration Analysis of the Atomic Force Microscope”, Transactions of ASME, Vol. 123, pp. 502-509, 2001.

    [7] U. Rabe, K. Janser, and W. Arnold, “Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers: Theory and Experiment”, Review of Scientific Instruments, Vol. 67, pp. 3281-3293, 1996.

    [8] U. Rabe, K. Janser, and W. Arnold, “Analysis of the High-Frequency Response of Atomic Force Microscope Cantilevers”, Applied Physics A Materials Science & Processing, Vol. 66, pp. 277-282, 1998.

    [9] H. Holscher, and D. Ebeling, “Theory of Q-Controlled Dynamic Force Microscopy in Air”, Journal of Applied Physics, Vol. 99, pp. 3111-3117, 2006.
    [10] M. Saito, K. Nakagawa, K. Yamanaka, Y. Takamura, G. Hashiguchi, and E. Tamiya, “A New Design of Knife-Edged AFM Probe for Chromosome Precision Manipulating”, Sensors and Actuators A, pp. 626-624, 2006.

    [11] W. J. Chang, and S. S. Chu, “Analytical Solution of Flexural Vibration Responses on Taped Atomic Force Microscope Cantilevers”, Physics Letters A, Vol. 309, pp. 133-137, 2003.

    [12] M. Enachescu, R. J. A. Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, and M. Salmeron, “Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond(111) Tungsten Carbide Interface”, Physical Review Letters, Vol. 81, pp. 1877-1879, 1998.

    [13] H. HolScher, U. D. Schwarz, and R. Wiesendanger, “Calculation of the Frequency Shift in Dynamic Force Microscopy”, Applied Surface Science, Vol. 140, pp. 344-351, 1999.

    [14] M. Sitti, and H. Hashimoto, “Controlled Punching of Nanoparticles: Modeling and Experiments”, IEEE/ASME Transactions on Mechatronics, Vol. 5, NO. 2, 2000.

    [15] V. A. Bykov, Y. A. Novikov, A. V. Rakov, and S. M. Shikin, “Defining the Parameters of a Cantilever Tip AFM by Reference structure”, Ultramicroscopy, Vol. 96, pp. 175-180, 2003.

    [16] K. Inagaki, O. V. Kolosov, G. A. D. Briggs, and O. B. Wright, “Waveguide Ultrasonic Force Microscopy at 60 MHz”, Appl Phys. Vol. 76, pp. 1836-1838, 2000.

    [17] J. A Turner, and J. S. Wiehn, “Sensitivity of Flexural and Torsional Vibration Modes of Atomic Force Microscope Cantilevers to Surface Stiffness Variations”, Nanotechnology, Vol. 12, pp. 322-330, 2001.

    [18] J. H. Park, and H. Asada, “Design and Control of Minimum-Phase Flexible Arms with Torque Transmission Mechanisms”, ASME Journal of Dynamic System, Measurement and Control, Vol. 116, pp. 201-207, 1994.

    [19] J. G. Zieger, and N. B. Nichols, “Optimum Setting for Automatic Controllers”, Trans. ASME, Vol. 64, pp. 759-768, 1942.

    [20] T. Yamamoto, M. Kaneda, T. Oki, E. Watanabe, and K. Tanaka, “Intelligent Tuning PID Controllers”, IEEE International Conference on System, Man and Cybernetics, Intelligent Systems for the 21 Centure, Vol. 3, pp. 2610-2615, 1995.

    [21] Y. Yongquan, Y. Huang, and B. Zeng, “A PID Neural Network Controller”, Institute of Computer Science and Intelligent Engineering Guangdong University of Technology.

    [22] B. Z. Wang, and T. Z. Lin, “Neural Network Based Online Self-Learning Adaptive PID Control”, IEEE, pp. 908-910. 2000

    [23] E. M. Hemerly, and J. C. L. Nascimento, “An NN-Based Approach for Tuning Servocontrollers”, Neural Networks, Vol. 12, NO. 3, pp. 513-518, April, 1999.

    [24] S. Omatu, and M. Yoshioka, “Self-Tuning Neural-PID Control and Applications”, IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 1985-1989, 1997.

    [25] S. Omatu, T. Iwasa, and M. Yoshioka, “Skill-Based PID Control by Using Neural Networks”, IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 1972-1977, 1998.

    [26] S. Omatu, T. Iwasa, and M. Yoshioka, “Neuro-PID Control for Inverted Single and Double Pendulums”, IEEE International Conference on System, Man, and Cybernetics, Vol. 4, pp. 2685-2690, 2000.

    [27] S. Akhyar, and S. Omatu, “Neuromorphic Self-Tuning PID Controller”, IEEE International Conference on Neural Networks, Vol. 1, pp. 552-557, 1993.

    [28] 葉怡成, “應用類神經網路”, 儒林圖書有限公司, 1997.

    [29] G. D. Martin, “On the Control of Flexible Mechanical System”, Ph. D. Dissertation, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, SUDARR 511, 1978.

    [30] 李政霖, “原子力顯微鏡探針控制系統之設計”, 國立台灣科技大學, 高分子工程研究所碩士論文, 2005.

    [31] W. J. Chang, “Sensitivity of Vibration Modes of Atomic Force Microscope Cantilevers in Continuous Surface Contact”, Nanotechnology, pp. 510-514, 2002.

    [32] C. F. Kuo, and S. C. Lin, “Lead with Closed-Loop System Vibration Modes of Rectangular AFM Cantilevers”, Physics Letters A, Vol. 312, pp. 158-165, 2003.

    [33] D. Dawson, and N. Jalili, “A Fresh Insight Into the Microcantilever- Sample Interaction Problem in Non-Contact Atomic Force Microscopy”, ASME Journal of Dynamic System, Measurement, and Control, Vol. 126, PP. 327-335, 2004.
    [34] 邱碩峰, “原子力顯微鏡探針量測系統之動態建模與控制”, 國立台灣科技大學, 高分子工程研究所碩士論文, 2006.
    [35] 王進德, “類神經網路與模糊控制理論”, 全華圖書股份有限公司, 1994.

    [36] A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti, and C. Nicolini, “Atomic Force Microscopy Lithography as a Nanodevice Development Technique”, Nanotechnology, Vol. 10, pp. 458-463, 1999.

    [37] W. B. Gevarter, “Basic Relations for Control of Flexible Vehicle”, AIAA Journal, Vol. 8, NO. 4, pp. 666-672, 1970.

    無法下載圖示 全文公開日期 2009/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE