簡易檢索 / 詳目顯示

研究生: 黃郁凱
Yu-Kai Huang
論文名稱: 陶金靶材之反應式濺鍍製備氮摻雜氧化銦鎵鋅薄膜及其性質研究
Processing and Property Characterization of Nitrogen-Doped Indium Gallium Zinc Oxide Thin Films Prepared by Reactive Sputtering with a Cermet Target
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 柯文政
Wen-Cheng Ke
薛人愷
Ren-kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 濺鍍氧化銦鎵鋅氮摻雜薄膜陶金靶材電特性
外文關鍵詞: Sputtering, Indium-Gallium-Zinc-Oxide, Nitrogen-doped, Thin films, Cermet target, Electrical property
相關次數: 點閱:288下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以本實驗室自行壓製陶金(陶瓷+金屬)靶材,採用RF反應式濺鍍法製備N摻雜的IGZO薄膜,以N取代O的位置,期望提高IGZO薄膜內的氮含量來提升載子遷移率及提升電性穩定性。實驗中,觀察在不同氧氣/氬氣流量、不同氮氣/氬氣流量及不同氧氣/氮氣比例之混合氣體流量的製程條件下,對於薄膜品質、電性及光學性質之影響。於本實驗中我們利用EDS、SEM、XRD、AFM、UV-vis、霍爾效應量測儀、橢圓偏光儀及HR-TEM來分析薄膜特性。
實驗中使用自製的(金屬銦+金屬鋅+氧化銦+氮化鎵)陶金靶材,在濺鍍功率120瓦、沉積溫度400oC、氧氣x sccm、氬氣20-x sccm (x= 5、7.5、10與15)條件下,製備不同N摻雜量之IGZNO薄膜。實驗結果顯示,隨著氧氣流量升高,N摻雜量會隨之降低,其表面形貌皆十分平坦只有些微結晶。所有薄膜在可見光區內皆有85%以上的高穿透率,能隙隨著氧摻雜量的增加而提高。由霍爾效應量測結果得知,摻入N能有效降低載子濃度,氮摻雜量增加載子遷移率隨之提升,在x=7.5時載子遷移率有最大值59.3cm^2V^-1s^-1,載子濃度為2.33x10^15cm^-3,導電率為0.0221S/cm,可見光區之折射率在2.046-2.062之間,可見光通過率達86%。
在濺鍍功率120瓦、沉積溫度400oC、氮氣x sccm、氬氣20-x sccm (x= 2.5、5、10與15)條件下,N摻雜量隨著氮氣流量增加而增加,其薄膜沉積速率逐漸上升,表面形貌變粗糙,結晶性提升,在x= 10、15時轉變為InN為主相的氮化物。在可見光區的穿透率明顯下降,變為不透光,能隙隨著氮氣流量提高而由2.5eV下降至2.06eV。其載子濃度及導電度明顯提升,在x= 15時載子遷移率有最高點35.8cm^2V^-1s^-1、載子濃度為3.36x10^18cm^-3、導電率為19.3S/cm。
在濺鍍功率120瓦、沉積溫度400oC、氧氣x sccm、氮氣(10–x) sccm、氬氣10 sccm (x= 2.5、3.7與 5 )條件下沉積薄膜,隨著氧氣流量提高,氮氣流量下降,薄膜內N摻雜量減少,能隙也隨之上升,其表面形貌及結晶性與通氧氣時相似,十分平坦,當x= 2.5時在可見光區的穿透率為73%,而其餘條件下皆有85%以上的高穿透率,由電性量測結果得知,在x= 3.7時,載子遷移率最大值45.5cm^2V^-1s^-1、載子濃度為2.16x10^16cm^-3、導電率為0.157S/cm、在可見光區的折射率由2.062降為2.048、可見光通過率達85%。


In this thesis, we successfully deposited nitrogen-doped IGZO thin film by radio- frequency reactive sputtering technique with an IGZNO cermet target which was made in our laboratory. The target was made up of indium, indium oxide, zinc, and gallium nitride. We expect oxygen to be replaced with nitrogen for improving the carrier mobility and electrical stability of the IGZO thin film. In this experiment, we changed the atmosphere in the chamber with O2/Ar, N2/Ar and O2/N2/Ar, and varied their flow rates to observe their effects on morphology, electrical property and optical property of the IGZNO thin film.
We deposited IGZNO films at 120 W and 400 oC in gas flow rates of O2 at x sccm with x= 5, 7.5, 10 and 15, and Ar at (20-x) sccm. The N content decreased while the O2 flow increased. The morphologies of all films were very flat. The transmittance reached over 85% and the refractive index were between 2.046-2.062 in visible light range. The band gap slightly increased while the O2 flow increased. From the results of Hall effect measurement, nitrogen doping effectively reduced the carrier concentration and increased the carrier mobility. For IGZNO at x=7.5, we got the maximum carrier mobility of 59.3cm2V-1s-1, while carrier concentration was 2.33x10^15cm-3, conductivity 0.0221S/cm, and the transmittance 86%.
At the second part, we deposited IGZNO films at 120 W and 400 oC in gas flow rates of N2 at x sccm with x= 2.5, 5, 10 and 15, and Ar at (20-x) sccm. The N content increased while the N2 flow increased. The morphology was getting rougher because of crystallinity increasing. The phase of the films became to nitride in InN while reaching x=10 and 15. The transmittance in visible light range decreased and became opaque. While the N2 flow increased, the band gap decreased from 2.5 to 2.06eV. From the results of Hall effect measurement, the carrier concentration and conductivity effectively increased by using N2 as the reaction gas. For IGZNO at x=15, we obtained the maximum carrier mobility 35.8cm2V-1s-1, while carrier concentration was 3.36x10^18cm-3 and conductivity 1.93S/cm.
At the last part, we deposited IGZNO films at 120 W, 400 oC in gas flow rates of O2 at x sccm with x= 2.5, 3.7 and 5, N2 at (10-x) sccm, and Ar at 10 sccm. The N content decreased while the O2 flow increased and the N2 flow decreased. The morphologies of all films were flat, similar to the films deposited by using O2 as the reaction gas. For IGZNO at x= 2.5, the transmittance was 73%, and the others reached over 85% in visible light range. The band gap increased and the refractive index decreased from 2.062 to 2.048 while the O2 flow increased and the N2 flow decreased. For IGZNO film at x=3.7, we achieved the maximum carrier mobility of 45.5cm2V-1s-1, while carrier concentration was 2.16x10^16cm-3, electrical conductivity 0.157S/cm, and the transmittance 85%.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 第1章緒論 1.1 前言 1.2 研究動機與目的 第2章 文獻回顧與原理 2.1 氧化銦鎵鋅的介紹 2.2 氧化銦鎵鋅的導電機制 2.3 不同條件下IGZO的製備與摻雜 第3章 實驗方法與步驟 3.1 實驗材料及規格 3.2 實驗儀器說明 3.2.1 RF反應式濺鍍系統 3.2.2 真空熱壓機 3.2.3 高溫真空管型爐系統 3.2.4 超音波震盪機 3.3 實驗步驟 3.3.1 靶材粉末配製 3.3.2 熱壓靶材 3.3.3 基板裁切與清洗 3.3.4 薄膜濺鍍 3.3.5 TEM試片製備 3.3.6 薄膜特性量測 3.4 分析儀器介紹及量測參數 3.4.1 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 3.4.2 原子力顯微鏡 (Atomic Force Microscopy System) 3.4.3 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 3.4.4 霍爾效應量測系統 (Hall Effect Measurement System) 3.4.5 紫外光、可見光/近紅外光分析儀 (UV-Vis/NIR spectrophotometer) 3.4.6 橢圓偏光儀 (Spectroscopic Ellipsometer) 3.4.7 場發射雙束型聚焦離子束顯微鏡 (Dual Beam Focused Ion Beam, FIB) 3.4.8 場發射穿透式電子顯微鏡 (Field Emission Gun Transmission Electron Microscopy, FEG-TEM) 第4章 結果與討論 4.1 改變氧氣及氬氣流量之IGZNO薄膜特性分析及探討 4.1.1 改變氧氣及氬氣流量之IGZNO薄膜成分分析 4.1.2 改變氧氣及氬氣流量之IGZNO薄膜SEM分析 4.1.3 改變氧氣及氬氣流量之IGZNO薄膜XRD分析 4.1.4 改變氧氣及氬氣流量之IGZNO薄膜AFM分析 4.1.5 改變氧氣及氬氣流量之IGZNO薄膜光學性質分析 4.1.6 改變氧氣及氬氣流量之IGZNO薄膜霍爾效應電性量測 4.1.7 改變氧氣及氬氣流量之IGZNO薄膜之折射率分析 4.2 改變氮氣及氬氣流量之IGZNO薄膜特性分析及探討 4.2.1 改變氮氣及氬氣流量之IGZNO薄膜成分分析 4.2.2 改變氮氣及氬氣流量之IGZNO薄膜SEM分析 4.2.3 改變氮氣及氬氣流量之IGZNO薄膜其XRD分析 4.2.4 改變氮氣及氬氣流量之IGZNO薄膜AFM分析 4.2.5 改變氮氣及氬氣流量之IGZNO薄膜光學性質分析 4.2.6 改變氮氣及氬氣流量之IGZNO薄膜霍爾效應電性量測 4.2.7 改變氮氣及氬氣流量之IGZNO薄膜之折射率分析 4.3 改變氧氣及氮氣流量之IGZNO薄膜特性分析及探討 4.3.1 改變氧氣及氮氣流量之IGZNO薄膜成分分析 4.3.2 改變氧氣及氮氣流量之IGZNO薄膜其SEM分析 4.3.3 改變氧氣及氮氣流量之IGZNO薄膜其XRD分析 4.3.4 改變氧氣及氮氣流量之IGZNO薄膜AFM分析 4.3.5 改變氧氣及氮氣流量之IGZNO薄膜其光學性質分析 4.3.6 改變氧氣及氮氣流量之IGZNO薄膜其霍爾效應電性量測 4.3.7 改變氧氣及氮氣流量之IGZNO薄膜之折射率分析 4.3.8 IGZNO薄膜其HR-TEM顯微結構及元素Mapping分析 第5章 結論 第6章 參考文獻

[1] A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, Electrical-properties of amorphous-silicon transistors and MIS-devices - comparative-study of top nitride and bottom nitride configurations, Journal of the Electrochemical Society, 140 (1993) 3679-3683.
[2] J. S. Yoo, H. Lee, J. Kanicki, C. D. Kim, I. J. Chung, Novel a-Si:H TFT pixel circuit for electrically stable top-anode light-emitting AMOLEDs, Journal of the Society for Information Display, 15 (2007) 545-551.
[3] S. D. Brotherton, Polycrystalline silicon thin-film transistors, Semiconductor Science and Technology, 10 (1995) 721-738.
[4] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, Pentacene organic thin-film transistors - molecular ordering and mobility, Ieee Electron Device Letters, 18 (1997) 87-89.
[5] J. K. Jeong, The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays, Semiconductor Science and Technology, 26 (2011) 1-10.
[6] 夏佑賢, 【使用雙主動層改善非晶氧化銦鎵鋅(a-IGZO)薄膜電晶體之電特性】, 國立台灣科技大學碩士論文, (2017) 2.
[7] 陳逸民, 【2013 顯示器面板產業發展趨勢】, 光連雙月刊, 106 (2013).
[8] T. Matsuo, S. Mori, A. Ban, A. Imaya, Advantages of IGZO oxide semiconductor, Journal of the Society for Information Display, 14 (2014) 83-86.
[9] H. Hosono, M. Yasukawa, H. Kawazoe, Novel oxide amorphous semiconductors: transparent conducting amorphous oxides, Journal of Non-Crystalline Solids, 203 (1996) 334-344.
[10] H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, Journal of Non-Crystalline Solids, 198-200 (1996) 165-169.
[11] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor, Science, 300 (2003) 1269-1272.
[12] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432 (2004) 488-492.
[13] M. Orita, H. Tanji, M. Mizuno, H. Adachi, I. Tanaka, Mechanism of electrical conductivity of transparent InGaZnO4, Physical Review B, 61 (2000) 1811-1816.
[14] N. Kenji, T. Akihiro, K. Toshio, O. Hiromichi, H. Masahiro, H. Hideo, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Japanese Journal of Applied Physics, 45 (2006) 4303-4308.
[15] H. Hosono, Ionic amorphous oxide semiconductors: material design, carrier transport, and device application, Journal of Non-Crystalline Solids, 352 (2006) 851-858.
[16] A. Thakur, S. J. Kang, J. Y. Baik, H. Yoo, I. J. Lee, H. K. Lee, S. Jung, J. Park, H. J. Shin, Effects of working pressure on morphology, structural, electrical and optical properties of a-InGaZnO thin films, Materials Research Bulletin, 47 (2012) 2911-2914.
[17] X. F. Chen, G. He, J. Gao, J. W. Zhang, D. Q. Xiao, P. Jin, B. Deng, Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO thin films, Journal of Alloys and Compounds, 632 (2015) 533-539.
[18] Y. S. Lee, W. J. Chen, J. S. Huang, S. C. Wu, Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows, Thin Solid Films, 520 (2012) 6942-6946.
[19] S. J. Liu, H. W. Fang, J. H. Hsieh, J. Y. Juang, Physical properties of amorphous Mo-doped In–Ga–Zn–O films grown by magnetron co-sputtering technique, Materials Research Bulletin, 47 (2012) 1568-1571.
[20] R. Gupta, K. Ghosh, S. Mishra, P. Kahol, Structural, optical and electrical characterization of highly conducting Mo-doped In2O3 thin films, Applied Surface Science, 254 (2008) 4018–4023.
[21] S. Y. Sun, J. L. Huang, D. F. Lii, Properties of indium molybdenum oxide films fabricated via high-density plasma evaporation at room temperature, Journal of Materials Research Society, 20 (2005) 247-255.
[22] J.E. Medvedeva, Magnetically mediated transparent conductors: In2O3 doped with Mo, Physical Review Letters, 97 (2006) 086401.
[23] B. Y. Su, S. Y. Chu, Y. D. Juang, S. Y. Liu, Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors, Journal of Alloys and Compounds, 580 (2013) 10-14.
[24] Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, D. L. Liu, Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy, Journal of Applied Physics, 95 (2004) 6268-6272.
[25] S. L. Zhan, M. Zhao, D. M. Zhuang, E. G. Fu, M. J. Cao, L. Guo, L. Q. Ouyang, The influence of nitrogen implantation on the electrical properties of amorphous IGZO, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 406 (2017) 596-599.
[26] S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature, Journal of Alloys and Compounds, 462 (2008) 335-339.
[27] S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method, Optical Materials, 34 (2012) 1946-1953.
[28] D. Y. Cho, J. Song, K. D. Na, C. S. Hwang, J. H. Jeong, J. K. Jeong, Y. G. Mo, Local structure and conduction mechanism in amorphous In–Ga–Zn–O films, Journal of Applied Physics Letters, 94 (2009) 112112.
[29] M. Higashiwaki, T. Matsui, Estimation of band-gap energy of intrinsic InN from photoluminescence properties of undoped and Si-doped InN films grown by plasma-assisted molecular-beam epitaxy, Journal of Crystal Growth, 269 (2004) 162-166.
[30] G. Koblmüller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, Optimization of the surface and structural quality of N-face InN grown by molecular beam epitaxy, Journal of Applied Physics Letters, 89 (2006) 071902.

QR CODE