簡易檢索 / 詳目顯示

研究生: 劉俊佑
Jun-Yu Liu
論文名稱: 二硫化鉬與三元過渡金屬硫化物Mo1-xWxS2(0≦x≦1)之異質接面二極體特性研究
Application and characteristics of heterojunction diode of Mo1-xWxS2(0≦x≦1)
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 71
中文關鍵詞: 層狀過渡金屬硫化物二極體異質接面Mo1-xWxS2MoS2WS2
外文關鍵詞: TMDCs, diode, heterostructure, Mo1-xWxS2, MoS2, WS2
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著資訊科技產業的蓬勃發展,如何縮小電子產品內部的半導體元件並提升運算速度儼然成為最重要的議題之一,除了不斷突破製程微縮化極限,也在尋求能夠取代矽的替代材料。過渡金屬硫化物 (Transition metal dichalcogenides, TMDCs) 在能隙與厚度之間有著相依的關係,加上高載子遷移率和高電流開關比的特性,在電晶體元件和光電元件的應用上具有相當大的潛力。本研究結合化學氣相傳導法 (Chemical vapor transport, CVT) 能夠合成大量高品質TMDCs晶體與機械剝離法 (Mechanical exfoliation) 簡易操作的優點,製備不同元素比例之Mo1-xWxS2 (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) 薄片樣品,利用掃描式電子顯微鏡做表面形貌與厚度分析,確認樣品皆為厚度3-5 m的層狀材料,並以X射線能量散佈能譜儀、X光繞射儀與拉曼光譜儀分析材料的成分組成,確認Mo1-xWxS2系列晶體品質良好且元素比例正確。接著我們透過電荷中性點量測了解晶體的半導體特性,將n-type的MoS2分別與不同元素比例之Mo1-xWxS2薄片樣品疊合,製作出p-n與n-n異質接面二極體,並成功量測其二極體電流-電壓特性曲線以及應用於半波整流電路當中,發現MoS2疊合Mo0.9W0.1S2的p-n異質接面二極體擁有優異的整流特性,整流的工作頻率從1 Hz到1 kHz,工作電壓落在1 V至5 V。


    With the vigorous development of the information technology industry, how to reduce the internal semiconductor components of electronic products and increase the computing speed has become one of the most important issues. Not only do the developers spare no effort to break the limits of process miniaturization constantly, but they also keep seeking alternative materials that can replace silicon. Transition metal dichalcogenides (TMDCs) have a dependent relationship between the energy band gap and the thickness. With the characteristics of high carrier mobility and high on-off ratio, they present considerable potentials in transistor and optoelectronic devices. In this study, we use the chemical vapor transport (CVT) method to synthesize plenty of high-quality Mo1-xWxS2 crystals with different proportion (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) and divide the crystals into thin films by the mechanical exfoliation method. To confirm that the samples are all layered materials with a thickness of 3-5 m, we use scanning electron microscope (SEM) to do surface morphology and thickness analysis. Qualitative and quantitative analyses are conducted using an energy dispersive X-Ray spectroscopy (EDS), X-ray diffractometer (XRD) and Raman spectrometer. The results indicate that the composition ratio of is correct. Then we obtain the information of the semiconductor conductivity type of the Mo1-xWxS2 series crystals by measuring the charge neutral point (CNP). Subsequently, the n-type MoS2 is stacked with Mo1-xWxS2 thin film samples with different composition ratios respectively to produce p-n and n-n heterojunction diodes. After the p-n and n-n diode current-voltage characteristic curve is measured successfully, we apply the p-n and n-n heterojunction diodes to the half-wave rectifying circuit. The results suggest that that the p-n heterojunction diode made of MoS2 and Mo0.9W0.1S2 has best rectification characteristics. This p-n diode was applied in the half-wave rectifying circuit at an operating frequency of 1 to 1000 Hz and an operating voltage of 1 to 5V.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VI 表索引 IX 第 1 章 緒論 1 1.1 二維半導體材料 1 1.2 過渡金屬硫化物 2 1.2.1 二硫化鉬 4 1.2.2 二硫化鎢 6 1.2.3 Mo1-xWxS2 7 1.2.4 合成與製備 8 1.3 p-n接面二極體 9 1.3.1 背景及工作原理 9 1.3.2 n-n接面二極體 11 1.4 研究背景及動機 14 第 2 章 實驗方法與設備 15 2.1 實驗流程圖 15 2.2 晶體成長方式 16 2.3 晶體成長設備 18 2.3.1 真空系統 18 2.3.2 高溫長晶爐 19 2.4 單晶成長 20 2.5 樣品製備與量測 22 2.5.1 電荷中性點量測 22 2.5.2 二極體量測 23 2.5.3 半波整流量測 24 2.6 分析量測儀器介紹 25 2.6.1 掃描式電子顯微鏡 25 2.6.2 X射線能量散佈能譜儀 27 2.6.3 X光繞射儀 28 2.6.4 拉曼光譜儀 29 2.6.5 半導體特性量測系統 31 第 3 章 結果與討論 32 3.1 掃描式電子顯微鏡 32 3.2 X射線能量散佈能譜儀 33 3.3 X光繞射儀 34 3.4 拉曼光譜 41 3.5 電荷中性點量測 42 3.6 二極體特性量測 43 3.6.1 p-n二極體特性量測 43 3.6.2 n-n二極體特性量測 44 3.7 半波整流 45 3.7.1 p-n二極體整流量測 45 3.7.2 n-n二極體整流量測 50 第 4 章 結論 53 參考文獻 54

    [1] Y. Liu, X. Duan, Y. Huang, and X. Duan, "Two-dimensional transistors beyond graphene and TMDCs," Chem. Soc. Rev., vol. 47, no. 16, pp. 6388-6409, 2018.
    [2] M. Long, P. Wang, H. Fang, and W. Hu, "Progress, challenges, and opportunities for 2D material based photodetectors," Adv. Funct. Mater., vol. 29, no. 19, p. 1803807, 2019.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [4] F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector," Nat. Nanotechnol., vol. 4, no. 12, pp. 839-843, 2009.
    [5] F. Schwierz, "Graphene transistors," Nat. Nanotechnol., vol. 5, no. 7, p. 487, 2010.
    [6] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Lett., vol. 8, no. 3, pp. 902-907, 2008.
    [7] K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, "The chemistry of graphene," J. Mater. Chem., vol. 20, no. 12, pp. 2277-2289, 2010.
    [8] T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and A. Lichtenstein, "Molecular doping of graphene," Nano Lett., vol. 8, no. 1, pp. 173-177, 2008.
    [9] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, and Y. Chen, "Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2," Nat. Nanotechnol., vol. 9, no. 2, p. 111, 2014.
    [10] X. Wang, T.-B. Zhang, W. Yang, H. Zhu, L. Chen, Q.-Q. Sun, and D. W. Zhang, "Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment," Appl. Phys. Lett., vol. 110, no. 5, p. 053110, 2017.
    [11] X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, and M. Pumera, "Electrochemistry of nanostructured layered transition-metal dichalcogenides," Chem. Rev., vol. 115, no. 21, pp. 11941-11966, 2015.
    [12] H. Xue, Y. Wang, Y. Dai, W. Kim, H. Jussila, M. Qi, J. Susoma, Z. Ren, Q. Dai, and J. Zhao, "A MoSe2/WSe2 heterojunction‐based photodetector at telecommunication wavelengths," Adv. Funct. Mater., vol. 28, no. 47, p. 1804388, 2018.
    [13] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Prog. Surf. Sci., vol. 29, no. 1-2, pp. 1-167, 1988.
    [14] Z. Wang, Q. Su, G. Yin, J. Shi, H. Deng, J. Guan, M. Wu, Y. Zhou, H. Lou, and Y. Q. Fu, "Structure and electronic properties of transition metal dichalcogenide MX2 (M= Mo, W, Nb; X= S, Se) monolayers with grain boundaries," Mater. Chem. Phys., vol. 147, no. 3, pp. 1068-1073, 2014.
    [15] B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, "Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study," ACS nano, vol. 9, no. 6, pp. 6119-6127, 2015.
    [16] H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets," Acc. Chem. Res., vol. 47, no. 4, pp. 1067-1075, 2014.
    [17] Y. Jing, B. Liu, X. Zhu, F. Ouyang, J. Sun, and Y. Zhou, "Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications," Nanophotonics, vol. 1, no. ahead-of-print, 2020.
    [18] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS 2 transistors," Nat. Nanotechnol., vol. 6, no. 3, pp. 147-150, 2011.
    [19] D. J. Late, C. S. Rout, D. Chakravarty, and S. Ratha, "Emerging energy applications of two-dimensional layered materials," Can. Chem. Trans, vol. 3, no. 118-157, pp. 118-157, 2015.
    [20] K. Bronsema, J. De Boer, and F. Jellinek, "On the structure of molybdenum diselenide and disulfide," Z. Anorg. Allg. Chem., vol. 540, no. 9‐10, pp. 15-17, 1986.
    [21] C.-P. Lu, G. Li, J. Mao, L.-M. Wang, and E. Y. Andrei, "Bandgap, mid-gap states, and gating effects in MoS2," Nano Lett., vol. 14, no. 8, pp. 4628-4633, 2014.
    [22] B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated circuits and logic operations based on single-layer MoS2," ACS nano, vol. 5, no. 12, pp. 9934-9938, 2011.
    [23] W. Deng, X. Chen, Y. Li, C. You, F. Chu, S. Li, B. An, Y. Ma, L. Liao, and Y. Zhang, "Strain Effect Enhanced Ultrasensitive MoS2 Nanoscrolls Avalanche Photodetector," J. Phys. Chem. Lett., 2020.
    [24] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, "Electrical transport properties of single-layer WS2," ACS nano, vol. 8, no. 8, pp. 8174-8181, 2014.
    [25] W. Schutte, J. De Boer, and F. Jellinek, "Crystal structures of tungsten disulfide and diselenide," J. Solid State Chem., vol. 70, no. 2, pp. 207-209, 1987.
    [26] F. Perrozzi, S. Emamjomeh, V. Paolucci, G. Taglieri, L. Ottaviano, and C. Cantalini, "Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2," Sensor. Actuat. B-Chem., vol. 243, pp. 812-822, 2017.
    [27] C. Feng, L. Huang, Z. Guo, and H. Liu, "Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application," Electrochem. Commun., vol. 9, no. 1, pp. 119-122, 2007.
    [28] X. Liu, J. Hu, C. Yue, N. Della Fera, Y. Ling, Z. Mao, and J. Wei, "High performance field-effect transistor based on multilayer tungsten disulfide," ACS nano, vol. 8, no. 10, pp. 10396-10402, 2014.
    [29] P. Lin and J. Yang, "Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics," J. Alloys Compd., p. 155890, 2020.
    [30] X. Zhang, S. Xiao, L. Shi, H. Nan, X. Wan, X. Gu, Z. Ni, and K. K. Ostrikov, "Large-size Mo1-xWxS2 and W1-xMoxS2 (x= 0–0.5) monolayers by confined-space chemical vapor deposition," Appl. Surf. Sci., vol. 457, pp. 591-597, 2018.
    [31] D. O. Dumcenco, H. Kobayashi, Z. Liu, Y.-S. Huang, and K. Suenaga, "Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers," Nat. Commun., vol. 4, no. 1, pp. 1-5, 2013.
    [32] Y. Chen, D. O. Dumcenco, Y. Zhu, X. Zhang, N. Mao, Q. Feng, M. Zhang, J. Zhang, P.-H. Tan, and Y.-S. Huang, "Composition-dependent Raman modes of Mo1−xWxS2 monolayer alloys," Nanoscale, vol. 6, no. 5, pp. 2833-2839, 2014.
    [33] 黃琮淯, "層狀過渡金屬硫化物Mo1-xWxS2 (0≤ x ≤1)應用於二極體之特性研究," 碩士, 光電工程研究所, 國立臺灣科技大學, 台北市, 107NTUS5124019, 2019. [Online]. Available: https://hdl.handle.net/11296/8m9s6y
    [34] W.-J. Su, Y.-L. Wang, W.-S. Gan, Y.-P. Wang, H.-P. Hsu, S.-i. Honda, P.-H. Lin, Y.-S. Huang, and K.-Y. Lee, "Fabrication and current-voltage characteristics of Mo1− xWxS2/graphene oxide heterojunction diode," Surf. Coat. Technol., vol. 320, pp. 520-526, 2017.
    [35] Y. Shu, W. Zhang, X. Yin, L. Zhang, Y. Yang, D. Ma, and Q. Gao, "Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers," J. Colloid Interface Sci., vol. 566, pp. 248-256, 2020.
    [36] A. Rai, R. Bhattacharya, J. Zabinski, and K. Miyoshi, "A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings," Surf. Coat. Technol., vol. 92, no. 1-2, pp. 120-128, 1997.
    [37] Z. Zeng, X. Sun, D. Zhang, W. Zheng, X. Fan, M. He, T. Xu, L. Sun, X. Wang, and A. Pan, "Controlled vapor growth and nonlinear optical applications of large‐area 3R phase WS2 and WSe2 atomic layers," Adv. Funct. Mater., vol. 29, no. 11, p. 1806874, 2019.
    [38] S. Heo, Y. Ishiguro, R. Hayakawa, T. Chikyow, and Y. Wakayama, "Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process," APL Materials, vol. 4, no. 3, p. 030901, 2016.
    [39] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, and H. Zhang, "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates," Nano Lett., vol. 12, no. 3, pp. 1538-1544, 2012.
    [40] D. A. Neamen, Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill, 2012.
    [41] J. M. Fiore, Semiconductor Devices: Theory and Application. dissidents, 2018.
    [42] R. Schuelke and M. Lundstrom, "Thermionic emission-diffusion theory of isotype heterojunctions," Solid·State Electron., vol. 27, no. 12, pp. 1111-1116, 1984.
    [43] W. Oldham and A. Milnes, "nn Semiconductor heterojunctions," Solid·State Electron., vol. 6, no. 2, pp. 121-132, 1963.
    [44] A. Khalid, N. Pilgrim, G. Dunn, M. Holland, C. Stanley, I. Thayne, and D. Cumming, "A planar Gunn diode operating above 100 GHz," IEEE Electron Device Lett., vol. 28, no. 10, pp. 849-851, 2007.
    [45] H. Schäfer, Chemical transport reactions. Elsevier, 2016.
    [46] D. A. Neamen, Microelectronics: circuit analysis and design. McGraw-Hill New York, 2007.
    [47] W. Zhou and Z. L. Wang, Scanning microscopy for nanotechnology: techniques and applications. Springer science & business media, 2007.
    [48] S. A. Speakman, "Basics of X-ray powder diffraction," the Center for Materials Science and Engineering at MIT, Tech. Rep. Massachusetts-USA, 2011.
    [49] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, no. 3048, pp. 501-502, 1928.
    [50] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, "Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration," J. R. Soc. Interface, vol. 13, no. 118, p. 20160182, 2016.
    [51] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides," ACS nano, vol. 8, no. 2, pp. 1102-1120, 2014.
    [52] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, "A molecular half-wave rectifier," J. Am. Chem. Soc., vol. 133, no. 39, pp. 15397-15411, 2011.
    [53] P. O. Lauritzen and C. L. Ma, "A simple diode model with reverse recovery," IEEE Trans. Power Electron., vol. 6, no. 2, pp. 188-191, 1991.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE