簡易檢索 / 詳目顯示

研究生: 李敏宏
Min-Hung Li
論文名稱: 以氮化鎵磊晶於矽基板的發光二極體晶圓研發垂直共振腔面射型雷射
Development of vertical-cavity surface-emitting lasers based on a GaN-on-Si LED wafer
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 蘇忠傑
Jung-Chieh Su
徐世祥
Shih-Hsiang Hsu
陳鴻興
Hung-Shing Chen
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 氮化鎵垂直共振腔面射型雷射矽擴散矽基板光電元件
外文關鍵詞: Gallium nitride, Vertical-cavity surface-emitting lasers, Silicon diffusion, Si-substrate, Optoelectronic device
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去,本實驗室是以氮化鎵磊晶於藍寶石基板(GaN-on-Sapphire)的晶圓,並搭配客製化的磊晶式DBR與介電質DBR做為下上反射鏡,成功製作出垂直共振腔面射型雷射(Vertical-cavity surface-emitting laser, VCSEL)。本研究嘗試利用商用氮化鎵磊晶於矽基板的發光二極體晶圓研發VCSEL,並將銀鏡及介電質DBR作為下上反射鏡,完成元件製作並量測每一階段的光電特性變化。
    本研究使用了矽擴散製程專利來做元件的電流阻擋層,有效定義出三種不同尺寸的發光孔徑,分別為:20 m、10 m以及5 m。再使用離子深蝕刻機選擇性移除矽基板,以電子束蒸鍍機來鍍製銀鏡,作為下層反射鏡,並從量測結果中可以發現,在銀鏡製作完成後,光功率的最大增長幅度可以達到81.2%。
    在介電質DBR鍍製完成後,可以從光譜量測中看出元件的共振效果明顯,且模距皆符合光縱模估計值。當電流逐漸增加時,元件也具有穩定的峰值波長, 且收窄半高寬。


    In the past, our laboratory had successfully fabricated vertical-cavity surface-emitting lasers (VCSELs) based on gallium nitride (GaN) grown on sapphire substrate (GaN-on-sapphire) with a customized epitaxial distributed Bragg reflector (DBR) and a dielectric DBR as the bottom and top reflectors.
    This study try to develop VCSELs based on GaN LED epitaxy on silicon substrate (GaN-on-Si) wafers commercially available. Dielectric DBRs and silver mirrors were utilized as the top and bottom reflectors, respectively. Device fabrication and characterizations after each major processing step have been carried out.
    In this study, a patented silicon diffusion process was employed to fabricate the current blocking layer for the devices, effectively defining three different emission aperture sizes: 20 μm, 10 μm, and 5 μm. Micro-LEDs were successfully fabricated. Then, deep reactive ion etching was utilized to selectively remove the Si substrate where a silver thin film served as the bottom reflector was deposited by an electron beam evaporator. Measurement results showed a maximum increase in optical power of 81.2% after adding the silver mirror.
    Furthermore, spectral measurements were conducted on the devices after completing the dielectric DBR deposition. The results clearly demonstrated the resonant behavior of the devices. As the current increased gradually, the devices exhibited stable peak wavelengths and narrowing in spectral width.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 氮化鎵材料介紹(including GaN grown on Si) 2 1.3 文獻回顧 8 1.4 研究動機 17 第二章 垂直共振腔面射型雷射光源原理 18 2.1 垂直共振腔面射型雷射原理 18 2.2 銀鏡 22 2.3 分散式布拉格反射鏡 23 2.4 電流與光學侷限結構 28 2.4.1 矽擴散型電流侷限結構 33 第三章 儀器介紹 34 3.1 製程儀器介紹 34 3.1.1 旋轉塗佈機 34 3.1.2 光罩對準機 35 3.1.3 感應耦合電漿式離子蝕刻機 36 3.1.4 電子束蒸鍍機 38 3.1.5 快速升溫退火爐 39 3.1.6 晶片研磨機 41 3.1.7 離子深蝕刻機(DRIE) 42 3.2 量測儀器介紹 43 3.2.1 I-V與L-I量測系統 43 3.2.2 薄膜厚度輪廓測度儀 45 3.2.3 電源供應器 46 3.2.4 手持式光功率計 47 3.2.5 光譜分析儀 48 第四章 元件設計與製程 49 4.1 元件設計 49 4.2 垂直共振腔面射型雷射元件製程 51 4.2.1 活化製程(Activation) 52 4.2.2 高台圖形製程(Mesa) 52 4.2.3 電流阻擋層製程(Current Blocking Layer, CBL) 54 4.2.4 二氧化矽絕緣層沉積 55 4.2.5 ITO透明導電層沉積 56 4.2.6 P型電極沉積 57 4.2.7 N型電極沉積 59 4.2.8 基板研磨 60 4.2.9 離子深蝕刻製程 61 4.2.10 銀鏡鍍製 62 4.2.11 介電質DBR鍍製 63 第五章 實驗結果與討論 64 5.1 元件在銀鏡鍍製前後的L-I-V和頻譜 64 5.2 VCSEL元件量測架構 77 5.3 VCSEL元件的量測結果 80 第六章 結論與未來展望 92 6.1 結論 92 6.2 未來展望 94 參考文獻 95

    [1] Bhuiyan, A.G., et al., Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy. Applied physics letters, 2003. 83(23): p. 4788-4790.
    [2] Neaman, D., Semiconductor physics and devices 4th edition. 2011, McGraw-Hill, New York.
    [3] Schubert, E.F., Light-emitting diodes. 2006: Cambridge university press.
    [4] 方昭訓, 矽晶片基板製作氮化鎵基 (GaN-based) LED 回顧與展望. 真空科技, 2010. 23(2): p. 62-72.
    [5] Levander, A.X. and K. Jun, Heterogeneous semiconductor material integration techniques. 2015, Google Patents.
    [6] Nikishin, S., et al., High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia. Applied physics letters, 1999. 75(14): p. 2073-2075.
    [7] Lu, Y., et al., Influence of the growth temperature of the high-temperature AlN buffer on the properties of GaN grown on Si (1 1 1) substrate. Journal of crystal growth, 2004. 263(1-4): p. 4-11.
    [8] Iga, K., Vertical-cavity surface-emitting laser: Its conception and evolution. Japanese Journal of Applied Physics, 2008. 47(1R): p. 1.
    [9] Redwing, J.M., et al., An optically pumped GaN–AlGaN vertical cavity surface emitting laser. Applied Physics Letters, 1996. 69(1): p. 1-3.
    [10] Kao, C.-C., et al., Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN∕ GaN and Ta 2 O 5∕ SiO 2 distributed Bragg reflector. Applied Physics Letters, 2005. 87(8): p. 081105.
    [11] Lu, T.-C., et al., CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Applied Physics Letters, 2008. 92(14): p. 141102.
    [12] Higuchi, Y., et al., Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection. Applied Physics Express, 2008. 1(12): p. 121102.
    [13] Lu, T.-C., et al., Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature. Applied Physics Letters, 2010. 97(7): p. 071114.
    [14] Kasahara, D., et al., Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature. Applied Physics Express, 2011. 4(7): p. 072103.
    [15] Yeh, P., et al., GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle. Applied Physics Letters, 2016. 109(24): p. 241103.
    [16] Liu, Y.-Y., T.-C. Wu, and P.S. Yeh, Etch-stop process for precisely controlling the vertical cavity length of GaN-based devices. Materials Science in Semiconductor Processing, 2020. 120: p. 105265.
    [17] Yeh, P.S., et al., GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer. Ieee Photonics Technology Letters, 2014. 26(24): p. 2488-2491.
    [18] 王興宗, 半導體雷射導論. 2008.
    [19] 吳國彰, 850nm 垂直共振腔面射型雷射之鈍化層改善及光電特性分析. 2018, 國立中央大學.
    [20] 周俊維, 以氮化鎵磊晶於矽基板晶圓製作的共振腔發光二極體. 2022, 國立臺灣科技大學.
    [21] Ogura, M., et al., Surface‐emitting laser diode with vertical GaAs/GaAlAs quarter‐wavelength multilayers and lateral buried heterostructure. Applied physics letters, 1987. 51(21): p. 1655-1657.
    [22] Hamaguchi, T., M. Tanaka, and H. Nakajima, A review on the latest progress of visible GaN-based VCSELs with lateral confinement by curved dielectric DBR reflector and boron ion implantation. Japanese Journal of Applied Physics, 2019. 58(SC): p. SC0806.
    [23] Kasap, S.O., Optoelectronics and photonics. 2013: Pearson Education UK.
    [24] Song, Y.-K., et al., A vertical cavity light emitting InGaN quantum well heterostructure. Applied physics letters, 1999. 74(23): p. 3441-3443.
    [25] Chu, J.-T., et al., Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers. Applied physics letters, 2006. 89(12): p. 121112.
    [26] Someya, T.S.T., et al., Lasing emission from an In0. 1Ga0. 9N vertical cavity surface emitting laser. Japanese journal of applied physics, 1998. 37(12A): p. L1424.
    [27] Someya, T., et al., Room temperature lasing at blue wavelengths in gallium nitride microcavities. Science, 1999. 285(5435): p. 1905-1906.
    [28] Kuramoto, M., et al., High-output-power and high-temperature operation of blue GaN-based vertical-cavity surface-emitting laser. Applied Physics Express, 2018. 11(11).
    [29] 盧廷昌 and 王興宗, 半導體雷射技術. 2022: 五南圖書出版股份有限公司.
    [30] Yeh, P.S., et al., GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle. Applied Physics Letters, 2016. 109(24).
    [31] 蕭宏, 半導體製程技術導論. 3 ed. 2014.
    [32] SUSS MicroTec MA/BA6 Gen2 User Manual.pdf.
    [33] 甯榮椿, 使用感應式耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦: 選擇比研究與 SC1 溶液對氮化鈦溼蝕刻速率研究. 2010.
    [34] Wikipedia. Electron-beam physical vapor deposition.
    [35] ULVCA. MILA-5000 User Manual_https://ulvac.eu/.
    [36] Tegramin-20_chinese.pdf.
    [37] Samco, What is the Bosch Process (Deep Reactive Ion Etching)_https://www.samcointl.com/what-is-the-bosch-process-deep-reactive-ion-etching/.
    [38] 致茂電子, 量測儀器及設備產品綜合型錄. 2010: p. 7-7.
    [39] DektakXT Stylus Profiling System Brochure-BRUKER.pdf.
    [40] Keithley, Model 2520 Pulsed Laser Diode Test System User's Manual.
    [41] Thorlabs, PM400 Operating Manual.
    [42] OceanOptics, USB4000 Fiber Optic Spectrometer Installation and Operation Manual.
    [43] Nakamura, S., et al., Thermal annealing effects on p-type Mg-doped GaN films. Japanese Journal of Applied Physics, 1992. 31(2B): p. L139.
    [44] 葉秉慧、余孟純、林家煥、黃景勤, "一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國專利發明第 I 563756 號, 自 2016 年 12 月 21 日至 2034 年 12 月 23 日。.
    [45] RefractiveIndex, https://refractiveindex.info/.
    [46] 張棋傑, 氮化鎵垂直共振腔面射型雷射與發光二極體之製造與特性量測. 2015, 國立臺灣科技大學.
    [47] Hamaguchi, T., et al., Room-temperature continuous-wave operation of green vertical-cavity surface-emitting lasers with a curved mirror fabricated on {20− 21} semi-polar GaN. Applied Physics Express, 2020. 13(4): p. 041002.

    無法下載圖示 全文公開日期 2025/07/28 (校內網路)
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE