簡易檢索 / 詳目顯示

研究生: 柯証育
Jeng-Yu Ke
論文名稱: 二硫化鉬及二硒化鎢接面二極體的備製與整流特性
Fabrication and Rectification Characteristics of Molybdenum Disulfide and Tungsten Diselenide Junction Diodes
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang -Chiun Chao
口試委員: 趙良君
Liang -Chiun Chao
李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 二維材料二硫化鉬二硒化鎢整流異質接面二極體同質接面二極體
外文關鍵詞: 2D materials, MoS2, WSe2, Heterojunction Diode, Homojunction Diode, Rectification
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用化學氣相傳導法(Chemical vapor transport, CVT)成長二硫化鉬(Molybdenum disulfide, MoS2)以及二硒化鎢(Tungsten diselenide, WSe2), 經由拉曼和XRD分析確定其材料組成結構並且為2H結構的單晶晶體. 以場效電晶體量測觀察MoS2以及WSe2的電荷中性點確認其半導體特性分別為n型以及p型, 透過機械式剝離法得到n型MoS2及p型WSe2的薄片, 將厚度控制在1-3 μm, 以垂直堆疊的方式製作了pn異質接面二極體, 量測二極體特性曲線以及半波整流實驗, 觀察到在1-6 Vpp及1-1000 Hz的低頻下表現出顯著的整流特性. 另一方面, 藉由氧摻雜的技術可以將n型MoS2轉換成p型MoS2, 並以場效電晶體的量測觀察電荷中性點從-80 V位移至+102 V確定n型MoS2成功地改變為p型MoS2, 進一步透過不鏽鋼基板作為遮罩, 在MoS2的表面製作出pn同質接面二極體, 並量測其二極體特性曲線以及半波整流實驗, 觀察到在1-7 Vpp並且在1-1000 Hz之下皆有優良的整流特性. 最後, 透過氧電漿摻雜, 進一步在MoS2的表面製作出pnp雙極性接面電晶體, 以黃光微影技術定義基極寬度, 經由氧摻雜技術將射極進行重摻雜, 基極保留n型半導體行為, 集極進行輕摻雜, 元件經由量測觀察到擁有穩定的主動區以及飽和區, 電流增益(β)經計算後為1.02. 本實驗成功地將二硫化鉬以及二硒化鎢透過垂直堆疊, 氧電漿摻雜以及黃光微影技術等等簡單的方式, 製作了兩種二極體以及電晶體, 驗證了二維材料中的過渡金屬硫屬化物 (Transition metal dichalcogenides, TMDs)對於研究上以及應用上皆有極大的潛力.


    The dissertation demonstrates the fabrication and discusses the characteristics of heterojuction diode, homojunction diode, and bipolar junction transistor (BJT). To start with, WSe2 and MoS2 were grown by chemical vapor transport (CVT). Material composition structure and hexagonal structure of WSe2 and MoS2 were respectively verified through Raman spectroscopy and X-ray diffraction analysis. The semiconductor behaviors of p-type WSe2 and n-type MoS2 were demonstrated by field effect transistor (FET) measurement, respectively. Through mechanical exfoliation, we limited the thickness of WSe2 and MoS2 sheets from 1 to 3 μm, and vertically stacked the sheets to form a pn heterojunction diode, which presented a significant rectification and low cut-in voltage. Indeed, the half-wave rectification experiment indicated that the pn heterojunction diode featured significant rectifying behavior under 1-6 Vpp and 1-1000 Hz. On the other hand, we used the oxygen plasma treatment to transform the characteristics of MoS2 from n-type to p-type and demonstrated the charge neutrality point (CNP) shift from -80 V to +102 V by the FET measurement, successfully. In order to fabricate a pn homojunction diode, we defined the junction on the surface of MoS2 with a mask for doping precisely. The pn homojunction diode shows excellent rectifying behavior with 1-10 Vpp and 1-1000 Hz by the half-wave rectification experiment. Finally, starting from the concept of pn homojunction diode, it is further fabricated into a pnp BJT. The base width of the BJT was defined by photolithography and the behavior of the n-type semiconductor was maintained in the base. Emitter and collector of the BJT were heavily doped p-type and lightly doped p-type with oxygen plasma, respectively. It is observed that it has a stable active region, saturation region, and cut-off region. In this experiment, a variety of transistors were fabricated by using molybdenum disulfide and tungsten diselenide in a simple method through vertical stacking, oxygen plasma doping, and photolithography. The dissertation demonstrates that Transition metal dichalcogenides (TMDs), vertically stacked and doped with oxygen plasma, have great potential for pn diodes which feature significant pn characteristics and rectifying behavior.

    中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII Chapter 1 緒論 1 1.1 二維材料 1 1.2 過渡金屬硫屬化合物 2 1.2.1 背景 2 1.2.2 二硫化鉬 4 1.2.3 二硒化鎢 6 1.2.4 合成與備製 8 1.3 pn接面二極體 9 1.3.1 背景 9 1.3.2 工作原理 9 1.3.3 氧摻雜 11 1.3.4 同質接面二極體 13 1.3.5 異質接面二極體 14 1.3.6 二極體半波整流 15 1.4 雙極性接面電晶體 16 1.4.1 背景 16 1.4.2 工作原理 17 1.5 研究動機 19 Chapter 2 晶體成長及實驗方式 20 2.1 實驗流程圖 20 2.2 樣品備製方式 21 2.2.1 二硫化鉬及二硒化鎢晶體成長 21 2.2.2 二硫化鉬及二硒化鎢薄片備製 24 2.2.3 氧摻雜之二硫化鉬pn同質接面二極體 25 2.2.4 二硫化鉬/二硒化鎢pn異質接面二極體 25 2.2.5 氧摻雜之二硫化鉬雙極性接面電晶體 26 2.2.6 黃光微影技術 27 2.2.7 氧電漿摻雜 28 2.3 分析儀器 30 2.3.1 拉曼光譜儀 30 2.3.2 X光粉末繞射分析 31 2.3.3 X光光電子能譜儀 32 2.3.4 穿透式電子顯微鏡 33 2.4 電性量測 34 2.4.1 場效電晶體量測 34 2.4.2 二極體電流-電壓特性量測 35 2.4.3 半波整流量測 36 2.4.4 雙極性接面電晶體量測 38 Chapter 3 結果與討論 39 3.1 拉曼光譜圖 39 3.2 X光粉末繞射 43 3.3 X光光電子能譜圖分析 47 3.4 穿透式電子顯微鏡影像分析 52 3.5 場效電晶體量測 53 3.6 二極體電流-電壓特性量測 55 3.6.1 氧摻雜之二硫化鉬pn同質接面二極體 55 3.6.2 二硫化鉬/二硒化鎢pn異質接面二極體 57 3.7 半波訊號整流量測 58 3.7.1 氧摻雜之二硫化鉬pn同質接面二極體 58 3.7.2 二硫化鉬/二硒化鎢pn異質接面二極體 61 3.8 雙極性接面電晶體量測 64 Chapter 4 結論 66 參考文獻 67

    [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, pp. 183-191, 2007.
    [2] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., vol. 100, no. 1, pp. 016602, 2008.
    [3] F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotech., vol. 4, no. 12, pp. 839, 2009.
    [4] L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, and S. Morozov, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science, vol. 335, no. 6071, pp. 947-950, 2012.
    [5] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323-327, 2008.
    [6] F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, no. 9, pp. 652, 2007.
    [7] H. J. Yoon, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B, vol. 157, no. 1, pp. 310-313, 2011.
    [8] Y.-F. Lu, S.-T. Lo, J.-C. Lin, W. Zhang, J.-Y. Lu, F.-H. Liu, C.-M. Tseng, Y.-H. Lee, C.-T. Liang, and L.-J. Li, “Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport,” ACS Nano, vol. 7, no. 8, pp. 6522-6532, 2013.
    [9] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, no. 11, pp. 699, 2012.
    [10] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol, vol. 6, no. 3, pp. 147, 2011.
    [11] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, “3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution,” Chem. Commun., vol. 53, no. 21, pp. 3054-3057, 2017.
    [12] Q. Tang and D.-e. Jiang, “Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles,” Acs Catalysis, vol. 6, no. 8, pp. 4953-4961, 2016.
    [13] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater., vol. 1, no. 9, pp. 16042, 2016.
    [14] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te),” Phy. Rev. B, vol. 85, no. 3, pp. 033305, 2012.
    [15] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, no. 2, pp. 1102-1120, 2014.
    [16] H. Li, Y. Shi, M.-H. Chiu, and L.-J. Li, “Emerging energy applications of two-dimensional layered transition metal dichalcogenides,” Nano Energy, vol. 18, pp. 293-305, 2015.
    [17] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, and T. F. Heinz, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature, vol. 514, no. 7523, pp. 470, 2014.
    [18] T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, “Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites,” Energy Environ. Sci., vol. 7, no. 1, pp. 209-231, 2014.
    [19] D. J. Late, C. S. Rout, D. Chakravarty, and S. Ratha, “Emerging energy applications of two-dimensional layered materials,” Can. Chem. Trans, vol. 3, no. 118-157, pp. 118-157, 2015.
    [20] E. Benavente, M. Santa Ana, F. Mendizábal, and G. González, “Intercalation chemistry of molybdenum disulfide,” Coord. Chem. Rev., vol. 224, no. 1-2, pp. 87-109, 2002.
    [21] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271-1275, 2010.
    [22] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B, vol. 83, no. 24, pp. 245213, 2011.
    [23] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74-80, 2011.
    [24] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-m. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett., vol. 9, no. 3, pp. 1039-1044, 2009.
    [25] X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, and T. Lin, “Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics,” Adv. Mater., vol. 27, no. 42, pp. 6575-6581, 2015.
    [26] H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev., vol. 44, no. 21, pp. 7715-7736, 2015.
    [27] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett., vol. 13, no. 5, pp. 1983-1990, 2013.
    [28] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phy. Rev. B, vol. 87, no. 16, pp. 165409, 2013.
    [29] S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, “Strain-induced indirect to direct bandgap transition in multilayer WSe2,” Nano Lett., vol. 14, no. 8, pp. 4592-4597, 2014.
    [30] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. Zahn, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908-4916, 2013.
    [31] Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology, vol. 27, no. 22, pp. 225501, 2016.
    [32] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788-3792, 2012.
    [33] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett., vol. 84, no. 17, pp. 3301-3303, 2004.
    [34] C. C. Chen and C. C. Yeh, “Large‐scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater., vol. 12, no. 10, pp. 738-741, 2000.
    [35] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, “Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320-2325, 2012.
    [36] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., vol. 11, no. 12, pp. 5111-5116, 2011.
    [37] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, “Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization,” ACS Nano, vol. 7, no. 3, pp. 2768-2772, 2013.
    [38] S. M. Sze and K. K. Ng, Physics of semiconductor devices, John wiley & sons, 2006.
    [39] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, “Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation,” ACS Nano, vol. 10, no. 2, pp. 2128-2137, 2016.
    [40] M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, and X. Liang, “Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping,” Appl. Phys. Lett., vol. 103, no. 14, pp. 142110, 2013.
    [41] S. I. Khondaker, and M. R. Islam, “Bandgap engineering of MoS2 flakes via oxygen plasma: a layer dependent study,” J. Phys. Chem. C, vol. 120, no. 25, pp. 13801-13806, 2016.
    [42] F. Giannazzo, G. Fisichella, G. Greco, S. Di Franco, I. Deretzis, A. La Magna, C. Bongiorno, G. Nicotra, C. Spinella, and M. Scopelliti, “Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization,” ACS Appl. Mater. Interfaces, vol. 9, no. 27, pp. 23164-23174, 2017.
    [43] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419, 2013.
    [44] H.-P. Komsa and A. V. Krasheninnikov, “Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles,” Phy. Rev. B, vol. 88, no. 8, pp. 085318, 2013.
    [45] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, “Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes,” Nano Lett., vol. 14, no. 10, pp. 5590-5597, 2014.
    [46] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, and J.-H. He, “Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface,” Science, vol. 349, no. 6247, pp. 524-528, 2015.
    [47] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, and B. I. Yakobson, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater., vol. 13, no. 12, pp. 1135, 2014.
    [48] K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, “2D materials and van der Waals heterostructures,” Science, vol. 353, no. 6298, pp. aac9439, 2016.
    [49] W.-J. Su, Y.-L. Wang, W.-S. Gan, Y.-P. Wang, H.-P. Hsu, S.-i. Honda, P.-H. Lin, Y.-S. Huang, and K.-Y. Lee, “Fabrication and current-voltage characteristics of Mo1− xWxS2/graphene oxide heterojunction diode,” Surf. Coat. Tech., vol. 320, pp. 520-526, 2017.
    [50] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, “A molecular half-wave rectifier,” J. Amer. Chem. Soc., vol. 133, no. 39, pp. 15397-15411, 2011.
    [51] C.-Y. Lin, X. Zhu, S.-H. Tsai, S.-P. Tsai, S. Lei, Y. Shi, L.-J. Li, S.-J. Huang, W.-F. Wu, and W.-K. Yeh, “Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon,” ACS Nano, vol. 11, no. 11, pp. 11015-11023, 2017.
    [52] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695-2700, 2010.
    [53] G. L. Frey, R. Tenne, M. J. Matthews, M. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phy. Rev. B, vol. 60, no. 4, pp. 2883, 1999.
    [54] K. Gołasa, M. Grzeszczyk, R. Bożek, P. Leszczyński, A. Wysmołek, M. Potemski, and A. Babiński, “Resonant Raman scattering in MoS2—From bulk to monolayer,” Solid State Commun., vol. 197, pp. 53-56, 2014.
    [55] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, and W. Yao, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci Rep., vol. 3, pp. 1608, 2013.
    [56] E. Del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M. A. Nguyen, T. E. Mallouk, M. Terrones, and M. A. Pimenta, “Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy,” ACS Nano, vol. 8, no. 9, pp. 9629-9635, 2014.
    [57] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, no. 7, pp. 1385-1390, 2012.
    [58] P. Spevack and N. McIntyre, “Thermal reduction of molybdenum trioxide,” J. Phys. Chem, vol. 96, no. 22, pp. 9029-9035, 1992.
    [59] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, “Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma,” Nanoscale, vol. 6, no. 17, pp. 10033-10039, 2014.
    [60] J. Yang, S. Kim, W. Choi, S. H. Park, Y. Jung, M.-H. Cho, and H. Kim, “Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment,” ACS Appl. Mater. Interfaces, vol. 5, no. 11, pp. 4739-4744, 2013.
    [61] [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, pp. 183-191, 2007.
    [2] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., vol. 100, no. 1, pp. 016602, 2008.
    [3] F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotech., vol. 4, no. 12, pp. 839, 2009.
    [4] L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, and S. Morozov, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science, vol. 335, no. 6071, pp. 947-950, 2012.
    [5] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, no. 1, pp. 323-327, 2008.
    [6] F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, no. 9, pp. 652, 2007.
    [7] H. J. Yoon, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B, vol. 157, no. 1, pp. 310-313, 2011.
    [8] Y.-F. Lu, S.-T. Lo, J.-C. Lin, W. Zhang, J.-Y. Lu, F.-H. Liu, C.-M. Tseng, Y.-H. Lee, C.-T. Liang, and L.-J. Li, “Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport,” ACS Nano, vol. 7, no. 8, pp. 6522-6532, 2013.
    [9] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, no. 11, pp. 699, 2012.
    [10] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol, vol. 6, no. 3, pp. 147, 2011.
    [11] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, “3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution,” Chem. Commun., vol. 53, no. 21, pp. 3054-3057, 2017.
    [12] Q. Tang and D.-e. Jiang, “Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles,” Acs Catalysis, vol. 6, no. 8, pp. 4953-4961, 2016.
    [13] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nat. Rev. Mater., vol. 1, no. 9, pp. 16042, 2016.
    [14] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te),” Phy. Rev. B, vol. 85, no. 3, pp. 033305, 2012.
    [15] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, no. 2, pp. 1102-1120, 2014.
    [16] H. Li, Y. Shi, M.-H. Chiu, and L.-J. Li, “Emerging energy applications of two-dimensional layered transition metal dichalcogenides,” Nano Energy, vol. 18, pp. 293-305, 2015.
    [17] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, and T. F. Heinz, “Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics,” Nature, vol. 514, no. 7523, pp. 470, 2014.
    [18] T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, “Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites,” Energy Environ. Sci., vol. 7, no. 1, pp. 209-231, 2014.
    [19] D. J. Late, C. S. Rout, D. Chakravarty, and S. Ratha, “Emerging energy applications of two-dimensional layered materials,” Can. Chem. Trans, vol. 3, no. 118-157, pp. 118-157, 2015.
    [20] E. Benavente, M. Santa Ana, F. Mendizábal, and G. González, “Intercalation chemistry of molybdenum disulfide,” Coord. Chem. Rev., vol. 224, no. 1-2, pp. 87-109, 2002.
    [21] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271-1275, 2010.
    [22] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B, vol. 83, no. 24, pp. 245213, 2011.
    [23] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74-80, 2011.
    [24] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-m. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett., vol. 9, no. 3, pp. 1039-1044, 2009.
    [25] X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, and T. Lin, “Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics,” Adv. Mater., vol. 27, no. 42, pp. 6575-6581, 2015.
    [26] H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects,” Chem. Soc. Rev., vol. 44, no. 21, pp. 7715-7736, 2015.
    [27] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett., vol. 13, no. 5, pp. 1983-1990, 2013.
    [28] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters, “Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phy. Rev. B, vol. 87, no. 16, pp. 165409, 2013.
    [29] S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, “Strain-induced indirect to direct bandgap transition in multilayer WSe2,” Nano Lett., vol. 14, no. 8, pp. 4592-4597, 2014.
    [30] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. Zahn, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908-4916, 2013.
    [31] Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, and G. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology, vol. 27, no. 22, pp. 225501, 2016.
    [32] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788-3792, 2012.
    [33] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett., vol. 84, no. 17, pp. 3301-3303, 2004.
    [34] C. C. Chen and C. C. Yeh, “Large‐scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater., vol. 12, no. 10, pp. 738-741, 2000.
    [35] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, “Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320-2325, 2012.
    [36] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., vol. 11, no. 12, pp. 5111-5116, 2011.
    [37] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, “Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization,” ACS Nano, vol. 7, no. 3, pp. 2768-2772, 2013.
    [38] S. M. Sze and K. K. Ng, Physics of semiconductor devices, John wiley & sons, 2006.
    [39] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, “Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation,” ACS Nano, vol. 10, no. 2, pp. 2128-2137, 2016.
    [40] M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, and X. Liang, “Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping,” Appl. Phys. Lett., vol. 103, no. 14, pp. 142110, 2013.
    [41] S. I. Khondaker, and M. R. Islam, “Bandgap engineering of MoS2 flakes via oxygen plasma: a layer dependent study,” J. Phys. Chem. C, vol. 120, no. 25, pp. 13801-13806, 2016.
    [42] F. Giannazzo, G. Fisichella, G. Greco, S. Di Franco, I. Deretzis, A. La Magna, C. Bongiorno, G. Nicotra, C. Spinella, and M. Scopelliti, “Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization,” ACS Appl. Mater. Interfaces, vol. 9, no. 27, pp. 23164-23174, 2017.
    [43] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419, 2013.
    [44] H.-P. Komsa and A. V. Krasheninnikov, “Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles,” Phy. Rev. B, vol. 88, no. 8, pp. 085318, 2013.
    [45] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, “Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes,” Nano Lett., vol. 14, no. 10, pp. 5590-5597, 2014.
    [46] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, and J.-H. He, “Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface,” Science, vol. 349, no. 6247, pp. 524-528, 2015.
    [47] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, and B. I. Yakobson, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater., vol. 13, no. 12, pp. 1135, 2014.
    [48] K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, “2D materials and van der Waals heterostructures,” Science, vol. 353, no. 6298, pp. aac9439, 2016.
    [49] W.-J. Su, Y.-L. Wang, W.-S. Gan, Y.-P. Wang, H.-P. Hsu, S.-i. Honda, P.-H. Lin, Y.-S. Huang, and K.-Y. Lee, “Fabrication and current-voltage characteristics of Mo1− xWxS2/graphene oxide heterojunction diode,” Surf. Coat. Tech., vol. 320, pp. 520-526, 2017.
    [50] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, “A molecular half-wave rectifier,” J. Amer. Chem. Soc., vol. 133, no. 39, pp. 15397-15411, 2011.
    [51] C.-Y. Lin, X. Zhu, S.-H. Tsai, S.-P. Tsai, S. Lei, Y. Shi, L.-J. Li, S.-J. Huang, W.-F. Wu, and W.-K. Yeh, “Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon,” ACS Nano, vol. 11, no. 11, pp. 11015-11023, 2017.
    [52] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695-2700, 2010.
    [53] G. L. Frey, R. Tenne, M. J. Matthews, M. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phy. Rev. B, vol. 60, no. 4, pp. 2883, 1999.
    [54] K. Gołasa, M. Grzeszczyk, R. Bożek, P. Leszczyński, A. Wysmołek, M. Potemski, and A. Babiński, “Resonant Raman scattering in MoS2—From bulk to monolayer,” Solid State Commun., vol. 197, pp. 53-56, 2014.
    [55] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, and W. Yao, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci Rep., vol. 3, pp. 1608, 2013.
    [56] E. Del Corro, H. Terrones, A. Elias, C. Fantini, S. Feng, M. A. Nguyen, T. E. Mallouk, M. Terrones, and M. A. Pimenta, “Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy,” ACS Nano, vol. 8, no. 9, pp. 9629-9635, 2014.
    [57] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, no. 7, pp. 1385-1390, 2012.
    [58] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, “Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma,” Nanoscale, vol. 6, no. 17, pp. 10033-10039, 2014.
    [59] J. Yang, S. Kim, W. Choi, S. H. Park, Y. Jung, M.-H. Cho, and H. Kim, “Improved growth behavior of atomic-layer-deposited high-k dielectrics on multilayer MoS2 by oxygen plasma pretreatment,” ACS Appl. Mater. Interfaces, vol. 5, no. 11, pp. 4739-4744, 2013.
    [60] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, and X. Wang, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano, vol. 8, no. 6, pp. 5738-5745, 2014.
    [62] S.-Y. Tai, C.-J. Liu, S.-W. Chou, F. S.-S. Chien, J.-Y. Lin, and T.-W. Lin, “Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells,” J. Mater. Chem., vol. 22, no. 47, pp. 24753-24759, 2012.
    [63] N. M. Brown, N. Cui, and A. McKinley, “An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma,” Appl. Surf. Sci., vol. 134, no. 1-4, pp. 11-21, 1998.
    [64] Q. Yue, S. Chang, S. Qin, and J. Li, “Functionalization of monolayer MoS2 by substitutional doping: a first-principles study,” Phys. Lett. A, vol. 377, no. 19-20, pp. 1362-1367, 2013.
    [65] J. U. Lee, P. Gipp, and C. Heller, “Carbon nanotube p-n junction diodes,” Appl. Phys. Lett., vol. 85, no. 1, pp. 145-147, 2004.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 2024/08/20 (校外網路)
    全文公開日期 2024/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE