簡易檢索 / 詳目顯示

研究生: 朱煜文
Yu-Wen Chu
論文名稱: 二硫化鎢層狀半導體之電子結構與電傳輸特性
Electrical and Electronic Properties in WS2 Layered Semiconductors
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
溫偉源
Wei‐Yen Woon
鄭澄懋
Cheng-Maw Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: 層狀半導體二硫化鎢電傳輸特性電子特性
外文關鍵詞: Layered semiconductor, Tungsten disulfide, Electronic Properties, Electrical Properties
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以化學氣相傳輸法(CVT)成長的高品質六方晶系(2H)二硫化鎢(WS2) 層狀半導體之電傳輸及表面電子結構特性。經由機械剝離法將WS2晶體製作成具有原始表面(non-fresh surface)和新撕表面歐姆接觸電極之奈米元件。發現奈米結構電導率比塊材高出約三個數量級,且電導率會隨厚度遞減而上升。由transfer length method (TLM)模型分析,可計算元件接觸電阻,發現電子傳輸行為並非遵循傳統的三維模式,而是二維的傳輸機制。透過變溫電導率量測觀察到,具有原始表面的奈米結構擁有比塊材低的活化能。上述結果皆指出WS2奈米結構存在表面主導之電傳輸特性。藉由掃描穿隧顯微鏡(STM)和角解析光電子能譜(ARPES)量測,證實了原始表面和新撕表面存在兩種不同的電子結構特性。量測結果顯示原始表面具有極高的電洞濃度,相反的新撕表面較偏向本質特性,不具有高的電洞濃度。此結果證實WS2存在表面電洞累積。最後利用場效電晶體(FET)量測得到出電洞遷移率,新撕表面遷移率為4.5 cm2V-1s-1。


    We study the electronic transport properties and surface electronic structure of two-hexagonal (2H) tungsten disulfide (WS2) layered semiconductors grown by chemical vapor transport (CVT). The two-terminal devices of WS2 nanosheets with fresh and non-fresh surfaces were fabricated by the mechanical exfoliation and focused-ion beam (FIB) methods. It was found that the conductivity of the WS2 nanostructure is about three orders of magnitude higher than the bulk, and the conductivity value increases as the thickness decreases. Using the transfer length method (TLM) model, we observed that the WS2 nanostructures follow a two-dimensional (2D) transport behavior rather than the conventional 3D mode. The carrier activation energy of the nanostructures is lower than that of the bulk counterparts. These results imply a surface-dominant electrical characteristics in WS2 nanostructures. The scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) measurements indicates that the nonfresh surface of WS2 possesses high hole concentration and on the contrary the fresh surface shows nearly intrinsic nature. The results confirm the presence of surface hole accumulation (SHA) in WS2. Presence of SHA provides an explanation for the physical origin of the 2D electronic transport and anomalously high conductivity in WS2 nanostructures. In addition, the carrier mobility of the WS2 nanosheets was measured by the field-effect transistor (FET) approach. The hole mobility was estimated to be 4.5cm2V-1s-1

    中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1二維層狀材料 2 1.2過渡金屬硫屬化合物 2 第二章 樣品介紹 4 2.1 二硫化鎢晶體成長 4 2.2 二硫化鎢晶體結構與基本特性 6 第三章 實驗方法 8 3.1 二硫化鎢層狀材料之形貌、結構特性及檢測介紹 8 3.1.1 X光繞射實驗(X-ray Diffraction, XRD) 8 3.1.2 拉曼光譜儀 (Raman Spectrometer) 11 3.2 二硫化鎢層狀半導體元件製作 24 3.3 元件之暗電導量測 28 第四章 結果與討論 34 4.1二硫化鎢晶體形貌與結構分 34 4.2二硫化鎢層狀半導體元件 38 4.3二硫化鎢奈米結構暗電導 40 4.4奈米結構電導率量測 49 4.5 電導率厚度相依特性之人為因素排除 52 4.5.1 材料與白金電極間接觸電阻影響排除 52 4.6變溫電導率與活化能量測 57 4.7 由STM觀察表面電洞聚集效應 61 4.8由ARPES證實表面電洞聚集來源 70 4.9 載子遷移率與表面電洞濃度 73 第五章 結論 76 參考文獻 78

    [1] Schaller, Robert R. "Moore's law: past, present and future." IEEE spectrum 34(6): 52-59, 1997
    [2] Theis, T. N., Solomon, P. M. "It’s Time to Reinvent the Transistor! " Science. 327(5973):1600-1, 2010
    [3] R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, "Integrated nanoelectronics for the future. "Nat Mater. 6(11):810-2, 2007
    [4] Powell, J. R. "The quantum limit to Moore's law." Proceedings of the IEEE. 96(8): 1247-1248, 2008
    [5] Waldrop, M. M. "The chips are down for Moore’s law." Nature News. 530(7589): 144, 2016
    [6] Chen, Z., Lin, Y. M., Rooks, M. J., & Avouris, P. "Graphene nano-ribbon electronics." Phys. E. 40(2): 228-232, 2007
    [7] Schedin, F., Geim, A. K., Morozov, S. V., et al. "Detection of individual gas molecules adsorbed on graphene." Nat. mater. 6(9): 652, 2007
    [8] Alivisatos, A.P. "Perspectives on the physical chemistry of semiconductor nanocrystals. " J. Phys. Chem. 100:13226, 1996
    [9] Yun, W. S., Han, W. S., Hong, S. C., Kim, I. G., Lee, J. D. “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors” Phys. Rev. B. 85: 2012
    [10] Radisavljevic, B. et al. "Single-layer MoS2 transistors." Nat. Nanotech. 6(3): 147, 2011
    [11] Wu, W., et al. "High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains." Appl. Phys. Lett. 102(14): 142106, 2013
    [12] Lopez-Sanchez, O., et al. "Ultrasensitive photodetectors based on monolayer MoS2" Nat. Nanotech. 8 (7): 497-501, 2013

    [13] Roy, K. et al. "Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. " Nat. Nanotech. 8: 826-830, 2013
    [14] Das, S., Gulotty, R., Sumant, A. V., Roelofs, A. “Ultrahigh-gain photodetectors based on atomically thin Graphene-MoS2 heterostructures.” Sci Rep. 4: 3826 2014
    [15] Das, S., Gulotty, R., Sumant, A. V., Roelofs, A. "All two-dimensional, flexible, transparent, and thinnest thin film transistor. ", Nano Lett.14 (5): 2861-2866, 2014
    [16] Wang, H., et al. "Integrated circuits based on bilayer MoS2 transistors." Nano. Letters. 12(9): 4674-4680, 2012
    [17] Xiao, J., et al. "Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries." Chem. Mater. 22(16): 4522-4524, 2010
    [18] H. E. Sliney, "Solid lubricant materials for high temperatures—a review." Tribol. Int. 15(5): 303-315, 1982
    [19] Braga, Daniele, et al. "Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors." Nano. Letters. 12(10): 5218-5223, 2012
    [20] Hong, X., et al. "Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures." Nat. nanotech. 9(9): 682, 2014
    [21] Huo, N., Yang, J., Huang, L., Wei, Z., Li, S. S., Wei, S. H., & Li, J. "Tunable Polarity Behavior and Self‐Driven Photoswitching in p‐WSe2/n‐WS2 Heterojunctions." Small 11(40): 5430-5438, 2015
    [22] Zhao, X., et al. "Effective p-type N-doped WS2 monolayer." J. Alloy. Comp. 649: 357-361, 2015
    [23] Chen, R. S., et al. "Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers." Nanotech. 25(41): 415706, 2014
    [24] Siao, M. D., et al. "Two-dimensional electronic transport and surface electron accumulation in MoS2." Nat. commun. 9(1): 1442, 2018.
    [25] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., Strano, M. S. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nat. nanotech. 7(11): 699, 2012
    [26] Toh, R. J., et al. "3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution." Chem. Commun. 53(21): 3054-3057, 2017
    [27] Bissessur, R., et al. "Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2." J. Chem. Soc. Chem. Commun. 20: 1582-1585, 1993
    [28] Kam, K. K., and B. A. Parkinson. "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides." J. Phys. Chem. 86(4): 463-467, 1982
    [29] Zhao, W., et al. "Evolution of electronic structure in atomically thin sheets of WS2 and WSe2." ACS nano 7(1): 791-797, 2012
    [30] Cullity, B. D., Stock, S. R. Elements of X-ray diffraction. Prentice Hall, New Jersey (2001).
    [31] Pollak, Fred H. et al. "Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices." Mater. Sci. Eng. R 10: 275-374 ,1993
    [32] Tseng, A. A. "Recent Developments in Nanofabrication using Focused Ion Beams", Small. 1: 924-939, 2005
    [33] A. A. Tseng, "Recent developments in micromilling using focused ion beam technology", J. Micromech. Microeng. 14: 15-34, 2004
    [34] Tseng, A. A., Chen, K., Chen, C.D., Ma, K. J., "Electron beam lithography in nanoscale fabrication: recent development", IEEE Trans. Electron. Packag. Manuf. 26: 141–149, 2003
    [35] Braet, F., De Zanger, R., & Wisse, E. "Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells", J. Micro. 186:84–87, 1997
    [36] From Wikipedia, the free encyclopedia, http://en .wikipedia.org/
    wiki/Scanning_tunneling_microscope
    [37] Hansma, P.K. “Scanning tunneling microscopy.” J. appl. Phys. 61(2), 1-24, 1987
    [38] Shen, Z. X. “Angle-Resolved Photoemission Spectroscopy Studies of Curpate Superconductors”, 2007
    [39] Damascelli, A. “Probing the electronic structure of complex systems by state-of-art ARPES”, 2007
    [40] Chang, Y. M., Kim, H., Lee, J. H., & Song, Y. W. “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett., 97(21): 211102, 2010
    [41] Nam, C. Y., Tham, D., Fischer, J. E., “Disorder effects in focused-ionbeam-deposited Pt contacts on GaN nanowires”, Nano Lett., 5: 2029-2033, 2005
    [42] Donald A. Neamen, “Semiconductor Physics and Devices”, 2011
    [43] Berkdemir, A et. al., "Identification of individual and few layers of WS2 using Raman spectroscopy." Scientific reports 3 (2013): 1755.
    [44] Yen, P. C., Y. S. Huang, and K. K. Tiong. "The growth and characterization of rhenium-doped WS2 single crystals." J. Phys.: Condens. Matter. 16(12): 2171, 2004
    [45] 沈葦竹, “二硫化鉬及二硫化鎢層狀半導體奈米結構之厚度相依電傳輸特性”國立台灣科技大學電子工程所碩士學位論文,2015
    [46] Kam, Kam-Keung. "Electrical properties of WSe2, WS2, MoSe2, MoS2, and their use as photoanodes in a semiconductor liquid junction solar cell." (1982).

    [47] Solanki, G. K., et al. "Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique." Cryst. Res. Technol. 43(2): 179-185, 2008

    [48] F. A. Filip, K. S. Thygesen, “Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides”, J. Phys. Chem. C, 119: 13169-13183, 2015
    [49] Ovchinnikov, Dmitry, et al. "Electrical transport properties of single-layer WS2." ACS nano 8(8): 8174-8181, 2014

    無法下載圖示 全文公開日期 2024/07/26 (校內網路)
    全文公開日期 2024/07/26 (校外網路)
    全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE