簡易檢索 / 詳目顯示

研究生: 劉胤呈
Ying-Chen Liu
論文名稱: 摻雜鎘和錫對層狀硒化銦半導體光學與電學特性之影響研究
Doping Effect of Cd and Sn on the Optical and Electrical Properties of Layered InSe
指導教授: 何清華
Ching-Hwa Ho
口試委員: 李奎毅
Kuei-Yi Lee
周宏隆
Hung-Lung Chou
林俊良
Chun-Liang Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 硒化銦同質接面堆疊參雜
外文關鍵詞: InSe, Homojunction, Stacking, Doping
相關次數: 點閱:458下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究為利用熔融體生長法 (Liquid phase growth) 成長層狀化合物半導體-硒化銦摻雜鎘原子系列 (InSe:Cd x%, x=0.5, 1, 5) 和硒化銦摻雜錫原子系列 (InSe:Sn x%, x=5) 之晶體,並針對二摻雜硒化銦系統晶體進行結構分析、光學與電學量測來 探討摻雜原子對化合物的影響。首先藉由能量色散 X 射線光譜 (Energy dispersive Xray spectroscopy, EDS) 確認元素比例與預期計算相符後,透過 X 射線光電子能譜 (Xray photoelectron spectroscopy, XPS) 觀察到 Cd 及 Sn 皆有摻入 InSe 中,且從 InSe:Cd 系列晶體可知,當 Cd 摻入愈多,使價帶 (Valence band, VB) 與費米能階的距離愈近。 從 X 射線粉末繞射圖 (X-ray diffraction analysis, XRD) 和高解析電子顯微圖 (Highresolution transmission electron microscopy, HRTEM) 的結果可確定 InSe:Cd 系列和 InSe:Sn 系列皆為六方晶系,而摻雜物並未對結構造成變化。在拉曼光譜觀察到每個 晶體都有相同的振動模態。光學量測中,藉由熱調制反射光譜 (μ-Thermoreflectance, μTR) 測出所有材料皆為直接能隙半導體,在 300 K 時能隙位置位於 1.238~1.242 eV , 此外在 10 K 之顯微光激發螢光光譜 (μ-Photoluminescence, μPL) ,可以觀察到 3 個激 子訊號,其中 M、SX 可合稱為複合束縛激子群,其中 SX 為表面之帶電性的雜質束 縛激子,其強度隨溫度衰減最快,和 M 隨溫度升高而逐漸合一再衰弱;FX 為自由 激子,隨溫度升高而紅移且強度隨溫度緩慢衰減。在電學量測熱探針與霍爾量測中, 可以測得 InSe 和 InSe:Sn 5% 為 n 型半導體,而 InSe:Cd 系列則變成 p 型半導體。在 V-I 以及范德堡法量測中發現 Cd 的加入,使 InSe:Cd 系列的電阻率增加。因 InSe 在 光電器件方面有廣泛應用,最後我們從中選擇 n-type 的 InSe:Sn 5% 與 p-type 的 InSe:Cd 0.5% 做初步的 InSe 同質接面 (Homojunction) 元件,除透過 V-I 量測出 p-n 接 面元件的二極體曲線外,我們外加電流時可發出 1.22 eV 的光,有做為紅外光 LED 的潛力。


    Indium selenide (InSe) has a potential in the fields of optoelectronic devices and integrated circuits. This study is about layered semiconductor InSe doped with tin (InSe:Sn 5%) and InSe doped with cadmium (InSe:Cd 0.5% , InSe:Cd 1%, InSe:Cd 5%) which grown by liquid phase growth. The structural analysis, optical and electrical measurements are carried out for dopant series crystals to explore the effect of dopant atoms on the compound. The energy dispersive X-ray spectroscopy (EDS) & X-ray photoelectron spectroscopy (XPS) confirmed the element ratio. The XPS spectra of Cd series displayed that the valence band shifted to higher as Cd composition increase, resulting in the peak shifting. From X-ray diffraction (XRD) spectra and transmission electron microscope (TEM) image, the crystal structure was hexagonal, and the lattice constant didn’t change significantly as Sn or Cd is doped inside InSe. The μRaman spectra revealed that all the crystals have 6 vibration modes. Optical properties of InSe:Sn 5% and Cd series were characterized using micro-thermalmodulated reflectance (μTR), and the direct bandgap ranging from 1.238-1.242 eV was obtained at 300 K. The band-edge emission features were carried out by temperature dependent micro-Photoluminescence (μPL). At 10 K the bound excitons complex/BECs (M, SX) and free exciton (FX) appeared. The hot probe and Hall measurement showed that InSe and InSe:Sn 5% are n-type, and all InSe:Cd series changed to p-type semiconductors. The resistivity of the InSe:Cd series became higher as Cd composition increased proven by V-I and van der Pauw experiment, meanwhile the resistivity of the InSe:Sn 5% didn’t change. In this work, we selected n-type InSe:Sn 5% to stack with p-type InSe:Cd 0.5% to make homojunction. The p-n junction displayed the diode curve with electroluminescence (EL) at 1.22 eV.

    中文摘要 Abstract 誌謝 目錄 圖索引 表索引. 第一章 緒論 第二章 晶體生長 2 2.1 生長前準備 2.1.1 樣品準備 2.2.2 石英管清洗 2.2.3 真空密封 2.2 生長晶體 2.2.1 三區程式控制高溫長晶爐 2.2.2 熔融體生長法 (Liquid phase growth) 第三章 實驗原理及量測系統 3.1 材料分析 3.1.1 能量色散 X 射線譜 (Energy-dispersive X-ray spectroscopy, EDS) 3.1.2 X 射線光電子能譜 (X-ray photoelectron spectroscopy, XPS) 3.1.3 X 射線晶格繞射分析儀 (X-ray diffraction analysis, XRD) 3.1.4 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 3.1.5 拉曼散射光譜 (Raman) 3.2 材料光電學分析 3.2.1 顯微光激發螢光光譜 (μPhotoluminescence, μPL) 3.2.2 熱調制光譜 (Thermoreflectance, TR) 3.2.3 熱探針量測 (Hot probe) 3.2.4 兩接點電阻率量測與光響應判定 3.2.5 四接點電阻率量測 (Van der Pauw) 3.2.6 霍爾量測 (Hall measurement) 3.2.7 凱爾文探針力 (Kelvin probe force) 3.3 堆疊材料分析 3.3.1 原子力顯微鏡 (Atomic force microscopy, AFM) 3.3.2 電激發螢光光譜 (Electroluminescence, EL) 第四章 結果與討論 4.1 材料分析 4.1.1 能量色散 X 射線譜 (EDS) 4.1.2 X 射線光電子能譜(XPS) 4.1.3 X 射線晶格繞射分析儀 (XRD) 4.1.4 穿透式電子顯微鏡 (TEM) 4.1.5 拉曼散射光譜 (Raman) 4.2 材料光電學分析 4.2.1 顯微光激發螢光光譜 (μPL) 4.2.2 熱調制光譜 (TR) 4.2.3 熱探針量測 4.2.4 兩接點電阻率量測與光響應判定 4.2.5 四接點電阻率量測 4.2.6 霍爾量測 4.2.7 凱爾文探針力 4.3 堆疊材料分析 4.3.1 原子力顯微鏡 (AFM) 4.3.2 同質結構 p-n 接面元件 (p-n junction) 第五章 結論 第六章 參考文獻

    [1] M. Li, C. Y. Lin, S. H. Yang, Y. M. Chang, J. K. Chang, F. S. Yang, C. Zhong, W. B. Jian, C. H. Lien, and C. H. Ho, “High mobilities in layered InSe transistors with indium‐ encapsulation‐induced surface charge doping,” Adv. Mater., vol. 30, no. 44, pp. 2125- 2131, 2018.
    [2] C. H. Ho, “Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe,” 2D Mater., pp. 2125-2131, 2016.
    [3] X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, P. M. Ajayan, "Chemical vapor deposition growth of crystalline monolayer MoSe2," ACS Nano, vol. 8, no. 5, pp. 5125-5131, 2014.
    [4] R. Uecker, "The historical development of the Czochralski method," J. Cryst. Growth, vol. 401, pp. 7-24, 2014.
    [5] R. Heinemann and P. Schmidt, "Crystal crowth by chemical vapor transport: process screening by complementary modeling and experiment," Cryst. Growth Des., vol. 20, no. 9, pp. 5986-6000, 2020.
    [6] L. Hildisch, "Nonstoichiometry of CdS crystals grown by different methods," J. Cryst. Growth, vol. 3, pp. 131-134, 1968.
    [7] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, "Scanning electron microscopy and X-ray microanalysis," Springer, 2017
    [8] G. Hota, S. Idage, and K. C. Khilar, "Characterization of nano-sized CdS–Ag2S coreshell nanoparticles using XPS technique," Colloid Surf. A-Physicochem. Eng. Asp., vol. 293, no. 1-3, pp. 5-12, 2007.
    [9] W. L. Bragg, "The diffraction of short electromagnetic waves by a crystal," Sci., vol. 23, no. 45, pp. 153-162, 1929.
    [10] C. Kittel, P. McEuen, and P. McEuen, "Introduction to solid state physics," Wiley, 2005. 59
    [11] P. Graves and D. Gardiner, "Practical raman spectroscopy," Springer, vol. 10, 1989.
    [12] A. H. Kitai, "Solid state luminescence: Theory, materials and devices," Springer Science & Business Media, 2012.
    [13] C. H. Ho and M. H. Lin, "Synthesis and optical characterization of a high-quality ZnS substrate for optoelectronics and UV solar-energy conversion," RSC Adv., vol. 6, no. 84, pp. 81053-81059, 2016.
    [14] B. O. Seraphin, R. B. Hess, and N. Bottka, “Field effect of the reflectivity in germanium,” J. Appl. Phys.., vol. 36, no. 7, pp. 2242-2250, 1965.
    [15] F. H. Pollak, and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng. R-Rep., vol. 10, no. 7-8, pp. xv-374, 1993.
    [16] C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum., vol. 75, no. 4, pp. 1098- 1102, 2004.
    [17] A. Axelevitch and G. Golan, "Hot-probe method for evaluation of majority charged carriers concentration in semiconductor thin films," Facta Univ.-Ser. Electron. Energ., vol. 26, no. 3, pp. 187-195, 2013.
    [18] L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Rep., vol. 13, no. 1, pp. 1-9, 1958.
    [19] O. Philips’Gloeilampenfabrieken, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Rep., 13, no.1, pp. 1-9, 1958.
    [20] Y.J. Sun, S.M. Pang, J. Zhang, “Layer number-dependent raman spectra of γ‑InSe,” J.Phys. Chem., vol.13, pp. 3691-3697, 2022.

    無法下載圖示 全文公開日期 2028/08/23 (校內網路)
    全文公開日期 2033/08/23 (校外網路)
    全文公開日期 2033/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE