簡易檢索 / 詳目顯示

研究生: 呂駿嶸
Chun-jung Lu
論文名稱: 固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究
The Oxidation and Electrical Properties of Metallic Interconnects in Solid Oxide Fuel Cells at High-Temperature
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 周振嘉
none
李雄
Shyong Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 113
中文關鍵詞: 固態氧化物燃料電池ASR高溫氧化金屬雙極板
外文關鍵詞: 205 duplex stainless steel, Solid oxide fuel cell, area specific resistance, High-temperature oxidation, Metallic Interconnects
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以2205雙相不銹鋼(2205DSS)網印La0.7Sr0.3MnO3 (LSMO)漿料(2205LSM),其在氮氣氣氛高溫燒結後作為固態氧化物燃料電池(SOFC)金屬雙極板材料,並於SOFC操作800℃空氣氣氛的操作環境,比較2205DSS與2205LSM的高溫氧化行為與電性行為差異。實驗結果顯示,2205LSM在1200℃氮氣氣氛燒結,LSMO會分解成其他氧化物。燒結溫度降低至1100℃,不但LSMO未分解亦完成燒結,同時界面間僅形成單層且薄的氧化皮膜。2205LSM於800℃空氣,因有LSMO層及界面間緻密氧化皮膜隔絕氧對合金底材的氧化,可有效降低氧化速率達2.2個數量級。2205DSS與2205LSM短時間電阻量測實驗顯示,預氧化96小時試片的ASR(Area specific resistance)均低於預氧化48小時試片的ASR。2205DSS於800℃長時間電阻量測,ASR分三個階段改變,初期主要為Cr2O3成長,ASR以較快速率增加,第二階段反而以緩慢速率減少,最後階段ASR以類似於拋物線率增加。而2205LSM的全程長時間電阻量測,ASR則相似於2205DSS的第二階段以緩慢速率減少。ASR減少的原因是氧化皮膜的(Cr, Mn)3O4比例提高及(Cr, Mn)3O4中Mn的含量上升或二價價金屬離子摻雜Cr2O3所致。


      The effect of La0.7Sr0.3MnO3 (LSMO) coating on the electric properties and oxidation resistance of 2205 duplex stainless steel (2205DSS) was examined at 800℃ in air. The LSMO was coated on 2205DSS (2205LSM) by screen printing and was sintered over the temperature range from 1000 to 1200℃ in N2. As the 2205LSM sintered at 1200C, the LSMO decomposed into La1-xSrxMnO3±δ, (La1-xSrx)2MnO4±λ, MnO, La2O3 and SrO. However, the LSMO was stable and only a thin oxide-scale formed between the LSMO layer/alloy interface, if the sintering temperature was lower to 1100℃. The LSMO layer prevented oxygen react with the alloy, as a result the oxidation rate of 2205LSM are 2.2 order of magnitude lower than those of 2205DSS at 800℃ in air.
      Short-term electric resistance measurements in still air as a function of temperature with pre-oxidized alloys indicate that the pre-oxidized of 2205DSS and 2205LSM for 96 hours are less ASR (area specific resistance) than those of 2205DSS and 2205LSM for 48 hours.
      Long-term electric resistance measurements for 2205DSS reveal three oxidation mechanism. The formation of Cr2O3 made ASR increase comparatively fast in initial stage. The ASR reduced slowly in the second stage. The ASR showed a nearly parabolic due to diffusional growth of oxide-scale in the last stage. Long-term resistance measurements for 2205LSM without pre-oxidation indicate that the ASR reduced slowly similar to the second stage of 2205DSS. The ASR depends on the electric conductive mechanism of the oxide scale.
    Keywords: 2205 duplex stainless steel, Solid oxide fuel cell, area specific resistance, High-temperature oxidation, Metallic Interconnects.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第1章 前言 1 第2章 文獻回顧 4 2.1 固態氧化物燃料電池簡介 4 2.1.1 固態氧化物燃料電池工作原理 4 2.1.2 電解質 5 2.1.3 陽極 6 2.1.4 陰極 7 2.1.5 雙極板 7 2.2 金屬雙極板材料之研究 8 2.2.1 LaCrO3基陶瓷材料 9 2.2.2 耐高溫合金 10 2.2.2.1 Cr基合金 10 2.2.2.2 Ni基合金 14 2.2.2.3 Fe基合金 19 2.2.3 金屬雙極板表面處理 25 2.3 金屬雙極板的接觸電阻 28 2.4 高溫氧化行為 32 2.4.1 熱力學資料 32 2.4.2 高溫氧化動力學 38 第3章 實驗方法 39 3.1 實驗流程 39 3.2 試片準備 40 3.3 LSMO漿料的準備 41 3.3.1 製作流程 41 3.3.2 LSMO粉末製作 42 3.3.3 LSMO漿料製備 44 3.4 熱膨脹係數量測 45 3.5 試片塗覆LSMO漿料製備 47 3.6 熱重分析儀測試(TGA) 49 3.7 高溫氧化 49 3.8 高溫電阻量測 49 3.8.1 短時間不同溫度電阻量測 50 3.8.2 長時間電阻量測 51 3.9 微觀形貌及成分組成分析 54 3.9.1 表面與橫截面之微觀形貌 54 3.9.2 XRD相分析 54 3.9.3 氧化物成分分析 54 3.10 分析設備 55 第4章 實驗結果 56 4.1 熱膨脹係數量測 56 4.2 LSMO與不同合金燒結 58 4.3 2205LSM不同溫度燒結 60 4.3.1 1200℃氮氣燒結2小時 60 4.3.2 1100℃氮氣燒結1.5小時 64 4.3.3 1000℃氮氣燒結2小時 69 4.4 氧化實驗 71 4.4.1 氧化動力學資料 71 4.4.2 氧化形貌 72 4.4.2.1 2205DSS 72 4.4.2.2 2205LSM 76 4.5 電阻量測 81 4.5.1 短時間不同溫度電阻量測 81 4.5.2 長時間電阻量測 84 第5章 討論 86 5.1 LSMO與合金燒結 86 5.1.1 LSMO與不同合金燒結 86 5.1.2 2205LSM之不同溫度燒結 87 5.2 高溫氧化 92 5.2.1 2205DSS 92 5.2.2 2205LSM 92 5.3 電阻量測 93 5.3.1 2205DSS預氧化皮膜短時間電阻量測 93 5.3.2 2205LSM短時間電阻量測 94 5.3.3 2205DSS長時間電阻量測 96 5.3.4 2205LSM長時間電阻量測 96 5.3.5 導電漿料的影響 97 第6章 結論 99 參考文獻 101 未來研究之建議 110 附錄A La0.7Sr0.3MnO3配重計算 111 附錄B 短時間電阻量測各溫度之ASR 112 作者簡介 113

    1. 吳明偉、陳柏元,“油價為何居高不下?”,中碳技術快報,159期 pp. 1-4 (2004)。
    2. 陳振源,“未來的綠色能源-燃料電池”,科學發展,391期,pp. 62-75 (2005)。
    3. 黃秉鈞、李健成,“人類未來的能源問題”,科學發展,386期,pp.56-61 (2005)。
    4. 楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展,367期,pp. 30-33 (2003)。
    5. 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國92年11月。
    6. S. C. Subhash, and K. Kendall, in “High-temperature solid oxide fuel cells :fundamentals, design, and applicatons”, Elsevier Advanced Technology, New York, pp. 173, (2003).
    7. S. de Souza, S.J. Visco, and L.C. De Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature,” Solid State Ionics, vol. 98, pp. 57-61 (1997).
    8. S. de Souza, S. J. Visco, and L. C. De Jonghe, “Reduced -temperature solid oxide fuel cell based on YSZ thin-film electrolyte”, Journal of the Electrochemical Society, vol. 144, L35 (1997).
    9. T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor”, Journal of the American Chemical Society, vol. 116, pp. 3801-3803 (1994).
    10. M. Hirano, T. Oda, K. Ukai and Y. Mizutani, “Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties”, Solid State Ionics, Vol. 158, pp. 215-223 (2003).
    11. P. Kofstad, and R. Bredesen, “High temperature corrosion in SOFC environments,” Solid State Ionics, vol. 52, pp. 69-75 (1992).
    12. W. J. Quadakkers, H. Greiner, M. Hansel, A. Pattanaik, A.S.Khanna, and W. Mallener, “Compatibility of perovskite contact layers between cathode and metallic interconnecter plates of SOFCs,” Solid State Ionics, vol. 91, pp. 55-67 (1996).
    13. 邱耀平,“國內推動固態氧化物燃料電池應用之研發工作規劃與系統概念設計”,能源季刊,第34卷第2期,pp. 92-110,民國92年11月。
    14. T. Ishihara, Y. Hiei and Y. Takita, “Oxidative reforming of methane using solid oxide fuel cell with LaGaO3-based electrolyte”, Solid State Ionics, Vol. 79, pp. 371-375 (1995).
    15. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, “Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction”, Solid State Ionics, Vol. 170, pp. 9-15 (2004).
    16. S. P. S. Badwal, and K. Foger, “Solid oxide electrolyte fuel cell review,” Ceramics International, vol. 22, pp. 257-265 (1996).
    17. 單耕、由宏新、丁信偉、阿布里提•阿布都拉,“固體氧化物燃料電池陽極結構研究進展”,電源技術,Vol. 29 No.7,pp. 488-490 (2005)。
    18. D. Simwonis, F. Tietz and D. Stöver, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”, Solid State Ionics, Vol. 132, pp. 241-251 (2000).
    19. T. Ishihara, T. Shibayama, H. Nishiguchi and Y. Takita, “Nickel-Gd-doped CeO2 cermet anode for intermediate temperature operating solid oxide fuel cells using LaGaO3-based perovskite electrolyte” Solid State Ionics, Vol. 132, pp. 209-216 (2000).
    20. A.-L. Sauvet, J. Fouletier, F. Gaillard, and M. Primet, “Surface Properties and Physicochemical Characterizations of a New Type of Anode Material, La1-xSrxCr1-yRuyO3-δ, for a Solid Oxide Fuel Cell under Methane at Intermediate Temperature”, Journal of Catalysis, Vol. 209, pp. 25-34 (2002).
    21. A. Hammouche, E. Siebert and A. Hammou, “Crystallographic, thermal and electrochemical properties of the system La1-xSrxMnO3 for high temperature solid electrolyte fuel cells” Materials Research Bulletin, Vol. 24, pp. 367-380 (1989).
    22. J. Mizusakia, Y. Yonemurab, H. Kamatab, K. Ohyamab,N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya ,T. Sasamoto , H. Inaba, T. Hashimoto, “Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3”, Solid State Ionics, Vol. 132, pp. 167-180 (2000).
    23. S. Wang, M. Katsuki, M. Dokiya and T. Hashimoto, “High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ phase structure and electrical conductivity”, Solid State Ionics, Vol. 159, pp. 71-78 (2003).
    24. Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio and Y. Esaki, “Ln1-xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells”, Solid State Ionics, Vol. 118, pp. 187-194 (1999).
    25. V. Dusastre and J. A. Kilner, “Optimisation of composite cathodes for intermediate temperature SOFC applications”, Solid State Ionics, Vol. 126, pp. 163-174 (1999).
    26. 黃炳照、鄭銘堯,“固態氧化物燃料電池之進展”,化工技術,第10卷第六期,pp.132-150 (2002)。
    27. 楊凌波、陳剛、胡克鰲,“固體氧化物燃料電池連接材料研究與進展”,材料導報,Vol. 17 No.z1,pp. 174-176 (2003)。
    28. H. Kurokawa, K. Kawamura and T. Maruyama, “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ion, Vol. 168, pp. 13-21 (2004).
    29. W. Z. Zhu and S. C. Deevi, “Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, Vol. 38, pp. 957-972 (2003).
    30. 敖青、李德輝、孫良成、李勝利、劉偉明,“固體氧化物燃料電池鉻酸鑭連接材料研究現狀”,金屬熱處理,Vol. 27 No.11,pp. 8-10 (2002)。
    31. 孫良成、李德輝、李勝利、付貴福、敖青、周天亮,“鉻酸鑭材料熱膨脹機理研究現狀”,工業加熱,Vol. 33 No. 3,pp. 27-31 (2004)。
    32. 韓敏芳、彭蘇萍,固體氧化物燃料電池材料與制備,科學出版社,2004年3月。
    33. 溫樹林、倫寧、付貴富、吳崇志、劉偉明、敖青、李勝利,“鉻酸鑭發熱元件顯微結構分析”,電子顯微學報, Vol. 21 No. 5,pp. 691-692 (2002)。
    34. R. Koc and H. U. Anderson, “Investigation of strontium-doped La(Cr, Mn)O3 for solid oxide fuel cells”, Journal of Materials Science, Vol. 27, pp. 5837-5843 (1992).
    35. I. Yasuda and T. Hikita, “Electrical Conductivity and Defect Structure of Calcium-Doped Lanthanum Chromites”, The Electrochemical Society, Vol. 140, pp. 1699-1704 (1993).
    36. T. R. Armstrong, J. W. Stevenson, L. R. Pederson, and P. E. Raney, “Dimensional Instability of Doped Lanthanum Chromite”, Journal of Electrochemical Society Vol. 143, pp. 2919-2925 (1996).
    37. H. Yakabe, M. Hishinuma, and I. Yasuda, “Static and Transient Model Analysis on Expansion Behavior of LaCrO3 under an Oxygen Potential Gradient”, Journal of Electrochemical Society, Vol. 147, pp. 4071-4077 (2000).
    38. F. Boroomand, E. Wessel, H. Bausinger and K. Hilpert, “Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for SOFCs”, Solid State Ionics, Vol. 129, pp. 251-258 (2000).
    39. S. Simner, J. Hardy, J. Stevenson and T. Armstrong, “Sintering mechanisms in strontium doped lanthanum chromite”, Journal of Materials Science, Vol. 34, pp. 5721-5732 (1999).
    40. K. Huang, P. Y. Hou and J. B. Goodenough, “Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells”, Solid State Ionics, Vol. 129, pp. 237-250 (2000).
    41. W. Z. Zhu and S. C. Deevi, “Development of interconnect materials for solid oxide fuel cells”, Materials Science and Engineering (A), Vol. 348, pp. 227-243 (2003).
    42. J. Q. Li and P. Xiao, “Fabrication and characterisation of La0.8Sr0.2MnO3/metal interfaces for application in SOFCs”, Journal of the European Ceramic Society, Vol. 21, pp. 659-668 (2001).
    43. H. W. Nie, T.-L. Wen and H. Y. Tu, “Protection coatings for planar solid oxide fuel cell interconnect prepared by plasma spraying”, Materials Research Bulletin, Vol. 38, pp. 1531-1536 (2003).
    44. Metals Handbook: Properties and Selection : Stainless Steels, Tool Materials and Special-Purpose Metals, 9th ed. Vol. 3, ASM ,Metals Park (1980).
    45. L. Jian, P. Jian, H. Bing and G. Xie, “Oxidation kinetics of Haynes 230 alloy in air at temperatures between 650 and 850℃”, Journal of Power Sources, in press (2006).
    46. S. J. Geng, J. H. Zhu and Z. G. Lu, “Evaluation of Haynes 242 alloy as SOFC interconnect material”, Solid State Ionics, Vol. 177, pp. 559-568 (2006).
    47. Z. Yang, G. G. Xia and J. W. Stevenson, “Evaluation of Ni-Cr-base alloys for SOFC interconnect applications”, Journal of Power Sources, in press (2006).
    48. A. L. Marasco and D. J. Young, “The oxidation of iron-chromium- manganese alloys at 900℃”, Oxidation of Metals, Vol. 36, pp. 157-174 (1991).
    49. M. G. C. Cox, B. McEnaney and V. D. Scott, “Kinetics of initial oxide growth on Fe-Cr alloys and the role of vacancies in film breakdown”, Philosophical Magazine, Vol. 31, pp. 331-338 (1975).
    50. R. K. WILD, “High temperature oxidation of austenitic stainless steel in low oxygen pressure”, Corrosion Science, Vol. 17, pp. 87-104 (1977).
    51. R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, “Diffusion of cations in chromia layers grown on iron-base alloys”, Oxidation of Metals, Vol. 37, pp. 81-93 (1992).
    52. M. G. C. Cox, B. McEnaney and V. D. Scott, “Chemical Diffusion Model for Partitioning of Transition Elements in Oxide Scales on Alloys”, Philosophical Magazine, Vol. 26, pp. 839-851 (1972).
    53. T. Horita, K. Yamaji, Y. Xiong, H. Kishimoto, N. Sakai and H. Yokokawa, “Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale”, Solid State Ionics, Vol. 175, pp. 157-163 (2004).
    54. P. Jian, L. Jian, H. Bing and G. Xie, “Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere”, Journal of Power Sources, in press (2005).
    55. W. Qu, L. Jian, J. M. Hill and D. G. Ivey, “Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects”, Journal of Power Sources, Vol. 153, pp. 114-124 (2006).
    56. D. H. Speidel and A. Muan, “The system manganes oxides-Cr2O3 in air”, Journal of the American Ceramic Society, Vol. 46, pp. 577-578 (1963).
    57. 李美栓,金屬的高溫腐蝕,冶金工業出版社,(2001)。
    58. P. Y. Hou and J. Stringer, “The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales”, Materials Science and Engineering (A), Vol. 202, pp. 1-10 (1995).
    59. J.-H. Kim, R. H. Song and S. H. Hyun, “Effect of slurry-coated LaSrMnO3 on the electrical property of Fe-Cr alloy for metallic interconnect of SOFC”, Solid State Ionics, Vol. 174, pp. 185-191 (2004).
    60. Y. D. Zhen, S. P. Jiang, S. Zhang and V. Tan, “Interaction between metallic interconnect and constitute oxides of (La, Sr)MnO3 coating of solid oxide fuel cells”, Journal of the European Ceramic Society, in press (2005).
    61. D.-H. Peck, M. Miller and K. Hilpert, “Vaporization and thermodynamics of La1-xSrxCrO3-δ investigated by Knudsen effusion mass spectroscopy”, Solid State Ionics, Vol. 143, pp. 401-412 (2001).
    62. J. H. Zhu, Y. Zhang, A. Basu, Z. G. Lu, M. Paranthaman, D. F. Lee and E. A. Payzant, “LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect application”, Surface and Coatings Technology, Vol. 177-178, pp. 65-72 (2004).
    63. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, “Chemical Thermodynamic Considerations in Sintering of LaCrO3-Based Perovskites”, Journal of the Electrochemical Society, Vol. 138, pp. 1018-1027 (1991).
    64. N. Birks and G. H. Meier, in “Introduction to High Temperature Oxidation of Metals”, Edward Arnold, London (1983).
    65. I. H. Jung, “Critical evaluation and thermodynamic modeling of the Mn-Cr-O system for the oxidation of SOFC interconnect”, Vol. 177, pp. 765-777 (2006).
    66. V. A. Cherepanov, L. Yu. Barkhatova and V. I. Voronin, “Phase Equilibria in the La-Sr-Mn-O System”, Journal of Solid State Chemistry, Vol. 134, pp. 38-44 (1997).
    67. E. T. Turkdogan, in “Physical chemistry of high temperature technology”, Academic Press, New York, (1980).
    68. T. Nakamura, G. Petzow and L. J. Gaukler, “Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results”, Materials Research Bulletin, Vol. 14, pp. 649-659 (1979).
    69. 陳家吉,表面滲鋁處理對特用型不銹鋼抗高溫氧化行為之研究,國立台灣海洋大學材料工程研究所碩士論文,民國95年。
    70. 王朝正,鐵-錳-鋁-鉻合金的高溫氧化,國立清華大學材料科學工程研所博士論文,民國77年。
    71. D.-H. Peck, M. Miller, D. Kobertz, H. Nickel and K. Hilpert, “Vaporization of LaCrO3: Partial and integral thermodynamic properties”, Journal of the American Ceramic Society, Vol. 79, pp. 3266-3272 (1996).
    72. I.-H. Jung, “Critical evaluation and thermodynamic modeling of the Mn-Cr-O system for the oxidation of SOFC interconnect”, Solid State Ionics, Vol. 177, pp. 765-777 (2006).
    73. C. Gindorf, L. Singheiser and K. Hilpert, ‘‘Chromium Vaporisation from Fe, Cr Base Alloys Used as Interconnect in Fuel Cells’’, Steel Research, Vol. 72, pp. 528-533 (2001).
    74. Z. Lu and J. Zhu, “Electrical Conductivity of the Manganese Chromite Spinel Solid Solution”, Journal of the American Ceramic Society, Vol. 88, pp. 1050-1053 (2005).
    75. J. S. Park and H. G. Kim, “Electrical Conductivity and Defect Models of MgO-Doped Cr2O3”, Journal of the American Ceramic Society, Vol. 71, pp. 173-176 (1988).
    76. J. P. Schaffer, A. Saxena, Jr., T. H. Sanders, S. D. Antolovich and S. B. Warner, in “Science and Design of Engineering Materials 2e”, McGraw-Hill, pp. 430 (1999).

    QR CODE