簡易檢索 / 詳目顯示

研究生: 陳昱廷
Yu-ting Chen
論文名稱: 鍋爐用鋼於混燒生質炭/煤之高溫腐蝕
High-temperature Corrosion of Boiler Steel under Co-firing of Biomass Charcoal / Coal Deposits
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 雷添壽
Tien-Shou Lei
林招松
Chao-Sung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 161
中文關鍵詞: 底灰生質炭氯氧化硫化高溫氧化
外文關鍵詞: bottom ash, biomass charcoal, oxy-chlorination, sulfurization, high temperature oxidation
相關次數: 點閱:212下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用SA213 T91和SA209 T1鍋爐用鋼於600°C 經25、36及49小時,進行空氣高溫氧化、單純燃燒生質炭、單純燃燒煤粉以及混燒生不同比例生質炭/煤的高溫腐蝕試驗,藉此為模擬高溫鍋爐的燃燒室區域,針對燃料沉積底灰的高溫腐蝕行為進行研究。藉由金屬損失量量測、OM觀察、SEM、XRD定性定量分析顯微結構形貌變化及腐蝕趨勢,比較兩種鋼料的差異,以探討燃料種類、鋼料成分對腐蝕行為的影響。
    實驗結果顯示,兩種鋼料在加入生質炭或是煤粉燃燒初期皆受到燃料內硫成份影響發生硫化,不同的是生質炭內的KCl成份會藉由氯氧化反應破壞T91氧化所生成之FeCr2O4保護性氧化皮膜,造成氧化皮膜破碎失去保護性,進而促使基材的加速氧化。隨著燃燒環境內加入生質炭的比例增加,T91的金屬減薄量亦隨之增加,高溫抗氧化性失效越加明顯,但此現象並未在T1出現。缺乏鉻合金成份保護的T1本身氧化就比T91迅速且嚴重,受燃燒環境內硫氯影響差別不大,因此在各個試驗條件下T1的金屬減薄量均比T91高出許多。隨著時間增長,由於燃料內的硫氯成份經由反應消耗掉其作用越為和緩,兩種鋼料後期腐蝕行為皆以高溫氧化為主。


    The purpose of this study is to simulate the fireside of boiler for high temperature application to study the high temperature corrosion problems of boiler steel by fuel bottom ash. SA213 T91 and SA209 T1 were used as the experimental material in this study. We varied 2 environmental factors. There were 3 time exposures: 25, 36, 49, hours; 5 different fuel mixtures: 0%, 10%, 20%, 30% and 100% of biomass charcoal, with balance being black anthracite coal. All experiments were at 600°C, and compare with high temperature oxidation in air under same condition. The results showed that both T91 and T1 were sulfurized at the start of corrosion by S content of biomass charcoal as well as coal. The difference is KCl of biomass charcoal would react with FeCr2O4 on T91 through oxy-chlorination. The oxidation of steel were accelerated when the protective oxide scale were decayed. Metal loss increased with biomass charcoal proportion increased, but it would not happen on T1. In lack of Cr content, oxidation would be much more serious on T1 than it on T91, caused more metal loss under all conditions and this would not be affected by S and Cl in combustion. As time increased, S and Cl contents in fuel were less effective to steel through consumption in reactions. Both T91 and T1 exhibited simply high temperature oxidation afterward.

    第一章 前言....................................................1 第二章 文獻回顧 ...............................................4 2.1 生質燃料..................................................4 2.1.1 生質燃料發展............................................5 2.1.2 生質燃料特性............................................6 2.1.3 生質燃料高溫腐蝕影響區域................................10 2.2 合金的高溫氧化............................................16 2.2.1 純鐵...................................................16 2.2.2 鐵鉻合金................................................19 2.3 高溫腐蝕機制..............................................23 2.3.1 KCl誘發的高溫腐蝕......................................24 2.3.2 鐵鉻合金於KCl之高溫腐蝕................................29 2.3.3 高溫硫化................................................32 第三章 實驗步驟................................................33 3.1 實驗流程…................................................33 3.2 試片製備……..............................................34 3.3 高溫腐蝕試驗…............................................34 3.3.1 生質炭/煤之高溫腐蝕試驗................................34 3.3.2 空氣高溫氧化試驗........................................37 3.4 分析方法..................................................38 3.4.1 灰燼分析................................................38 3.4.2 量測金屬損失............................................39 3.4.3 試片表面XRD分析.........................................41 3.4.4 截面金相觀察............................................41 3.4.5 SEM定性定量分析.........................................41 3.5 生質炭及煤之消耗試驗......................................42 3.6 分析設備..................................................43 第四章 實驗結果................................................44 4.1 燃料高溫悶燒試驗..........................................44 4.2 高溫氧化及腐蝕試驗........................................49 4.2.1 腐蝕形態外觀............................................49 4.2.2 XRD分析.................................................54 4.2.3 腐蝕形貌及組成..........................................56 4.2.4 金屬減薄量..............................................81 第五章 討論....................................................85 5.1 腐蝕反應機制.............................................85 5.1.1 腐蝕過程中的氧化........................................85 5.1.2 燃料中氯的作用..........................................87 5.1.3 燃料中硫的作用..........................................92 5.2 混燒比例不同之金屬減薄量..................................94 5.3 腐蝕時間的影響............................................96 第六章 結論....................................................98 參考文獻.......................................................99 附錄一........................................................106 附錄二........................................................156

    1. 生質能源資料庫(http://140.114.98.89/biomass/)

    2. J. Lehmusto, D. Lindberg, P. Yrjas, B.-J Skrifvars, M. Hupa, “Studies on
    the Partial Reactions Between Potassium Chloride and Metallic Chromium Concerning Corrosion at Elevated Temperatures”, Oxidation of Metals, 77, 129-148 (2012)

    3. Xutao Wang, Xingtao Zhao, Liangtao Ma, Qinling Zhao, “Deposition and Corrosion Problems of Biomass Fired Boiler”, 2011 Third International Conference on Measuring Technology and Mechatronics Automation

    4. B.M Jenkins, L.L. Baxter, T.R. Miles Jr., T.R. Miles, “Combustion Properties of Biomass”, Fuel Processing Technology, 54, 17-46 (1998)

    5. A.U. Syed, N.J. Simms, J.E. Oakey, “Fireside Corrosion of Superheaters: Effects of Air and Oxy-Firing of Coal and Biomass”, Fuel, in press, corrected proof, available online 24 March 2011

    6. Lars-Gunnar Johansson, Jan-Erik Svensson, Erik Skog, Jesper Pettersson, Carolina Pettersson, Nicklas Folkeson, Henrik Asteman, Torbjorn Jonsson, Mats Halvarsson, “Critical Corrosion Phenomena on Superheaters in Biomass and Waste-Fired Boilers”, Journal of Iron and Steel Research, International, Vol. 14, issue 5, 35-39 (2007)

    7. H.P. Neilson, L.L Baxter, G. Sclippab, C. Morey, F.J. Frandsen, K. Dam-Johanson, “Deposition of Potassium Salts on Heat Transfer Surfaces in Straw-Fired Boilers: a Pilot Study”, Fuel, 79, 131-139 (2000)

    8. L. L. Baxter, “Ash Deposition During Biomass and Coal Combustion: a Mechanistic Approach”, Biomass and Bioenergy, Vol. 4, No. 2, 85-102 (1993)

    9. K.K.Parthiban, CHORLINE INDUCED HIGH TEMPERATURE SUPERHEATER CORROSION IN BIOMASS POWER PLANTS

    10. C. Liu, J.A. Little, P. J. Henderson, PER Ljung, “Corrosion of TP347H FG stainless steel in a biomass fired PF utility boiler”, J. Mater. Sci., 1015-1026, 36 (2001)

    11. L.L. Baxter, “Biomass cofiring overview. Second world conference and exhibition on biomass for energy”, industry and climate protection, Rome, Italy. May 10–14 (2004)., Fuel, in press, corrected proof, available online 24 March 2011

    12. J. Koppejan., “Introduction and overview of technologies applied worldwide”, Second world conference and exhibition on biomass for energy, industry and climate protection, Rome, Italy. May 10–14 (2004)

    13. M. Sami., K. Annamalai, M. Wooldridge, “Co-firing of coal and biomass fuel blends”, Prog Energy Combust Sci 2001;27:171–214

    14. R. Saidura, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, “A Review of on Biomass as a Fuel for Boilers”, Renewable and Sustainable Energy Reviews, 15, 2262–2289 (2011)

    15. M. Montgomery, T. Vilhelmsen and S. A. Jensen, “Potential High Temperature Corrosion Problems due to Co-firing of Biomass and Fossil Fuels”, Materials and Corrosion, 2008, 59, No,10

    16. Inwald Obernberger, Friedrich Biedermann, Walter Widmann and Rudolf Riedl, “Concentrations of Inorganic Elements in Biomass Fuels and Recovery in the Different Ash Fractions”, Biomass and Bioenergy, Vol. 12, No. 3, 211-224 (1997)

    17. J. Lehmusto, B-J. Skrifvars, P. Yrjas, M. Hupa,” High Temperature Oxidation of Metallic Chromium Exposed to Eight Different Metal Chlorides”, Corrosion Science, 53, 3315-3323 (2011)

    18. Jiamin Yin, Zhansong Wu, “Corrosion Behavior of TP316L of Superheater in Biomass Boiler with Simulated Atmosphere and Deposit”, Chinese Journal of Chemical Engineering, 17 (5), 849-853 (2009)

    19. A.I Kahveci, G. Welsch, “High Temperature Oxidation of Fe 3wt% Cr Alloy”, Scripta Metallurgica, Vol. 17, 121-126 (1983)

    20. R. Viswanathan and W. Bakker, “Materials for Ultrasupercritical Coal Power Plants – Boiler Materials: part 1”, JMEPEG, 10, 81-95 (2001)

    21. Friedrich Biedermann, Ingwald Obernberg, “Ash Related Problems during Biomass Combustion and Possibilities for a Sustainable Ash Utilisation”, Proceedings of the International Conference “WREC”, May, Scotland, Elsevier Ltd., Oxford, UK (2005)

    22. A.A. Khan, W.D. Jonga, P.J. Jansens, H. Spliethoff, “Biomass combustion in fluidized bed boilers : potential problems and remedies”, Fuel Process Technology, 90, 21–50 (2009)

    23. H. Kassman, M. Broström, M. Berg, L.-E. Åmand, “Measures to reduce chlorine in deposits : application in a large-scale circulating fluidised bed boiler firing biomass”, Fuel, 90, (2011) 1325–1334.

    24. Yao-Nan Chang, Feng-I Wei, “Review High Temperature Oxidation of Low Alloy Steels”, Journal of Materials Science, 24, 14-22 (1989)

    25. N. Birks, G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Edward Arnold Ltd(1983)

    26. B. Chattopadhyay and G. C. Wood , “The Transient Oxidation of Alloys” , Oxid. Met., 2 , No. 4 , 373 (1970)

    27. A.P. Greeff, C.W. Louw, H.C. Swart, “The Oxidation of Industrial FeCrMo Steel”, Corrosion Science, 42, 1725-1740 (2000)

    28. G.Y. Lai, in “High-Temperature Corrosion of Engineering Alloys”, ASM, International(1990)

    29. J. Lehmusto, D. Lindberg, P. Yrjas, B.-J Skrifvars, M. Hupa, “Thermogravimetric Studies of High Temperature Reactions Between Potassium Salts and Chromium”, Corrosion Science, 59, 55-62 (2012)

    30. H.T. Ma, C.H Zhou, L. Wang, “High Temperature Corrosion of Pure Fe, Cr and Fe-Cr Binary Alloys in O2 Containing Trace KCl Vapour at 750 °C”, Corrosion Science, 51, 1861-1867 (2009)

    31. J. Lehmusto, B-J. Skrifvars, P. Yrjas, M. Hupa, “Comparison of Potassium Chloride and Potassium with respect to their Tendency to Cause High Temperature Corrosion of Stainless 304L steel”, Fuel Processing Technology, In Press, Corrected Proof, Available online 11 January 2012

    32. Y.S. Li, M. Spiegel, S. Shimada, “Effect of Al/ Si on KCl induced corrosion of 9% Cr steel”, Material Letters, 58, 3783-3791 (2004)

    33. K. Natesan, In High Temperature Corrosion, R.A. Rapp, Ed, National Association of Corrosion Engineers, Houston, p.336 (1983)

    34. J. Stringer, “Hot Corrosion of High Temperature Alloys”, Ann. Rev. Mate. Science, Vol. 7, p.477-509 (1977)

    35. H.P. Nielsen, F.J Frandsen, K. Dam-Johansen, L.L Baxter, “The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers”, Progress in Energy and Combustion Science, 26, 283-298 (2000)

    36. A. Demirbas, “Combustion characteristics of different biomass fuels”, Prog Energy Combust Sci 2004;30:219–230.

    37. J. R. Kishand, D.L. Singbeil1, C. Reid, R. Seguin: Corrosion of high alloy superheater tubes in a coastal biomass power boiler, NACE - Int. Corros. Conf. Ser., (2007) p.073491.

    38. C.J. Wang, T.T.He, "Morphological development of subscale formation in Fe-Cr-(Ni) alloys with chloride and sulfates coating", Oxid. Met., 58 (2002) p. 415

    39. T. Blomberg, “Which Are the Right Test Conditions for the Simulation of High Temperature Alkali Corrosion in Biomass Combustion”, Materials and Corrosion, 57, No. 2, 170-175 (2006)

    QR CODE