簡易檢索 / 詳目顯示

研究生: 胡家瑜
Jia-Yu Hu
論文名稱: 磁控濺鍍法製備金屬改質的二硫化鉬薄膜於電催化產氫之研究
Metal-Modified Molybdenum Disulfide Films Prepared by Magnetron Sputtering for Electrocatalytic Hydrogen Evolution
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 濺鍍二硫化鉬金屬摻雜陶金靶才薄膜電特性
外文關鍵詞: RF sputtering, MoS2, metal doping, Cermet target, thin film, electrical property
相關次數: 點閱:216下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中所使用的金屬硫化物陶金靶材是由本實驗室熱壓機自行壓製而成,利用RF磁控濺鍍法在低沉積溫度下能夠成功地製備出具高電催化特性之Ag/MoSx薄膜。實驗中,探討靶材中不同Ag含量比例,不同硫化物與氧化物添加對於薄膜品質及電化學特性之影響。我們也利用EDS、SEM、RAMAN、XRD、TEM、雙頻道恆電位/電流/交流阻抗儀及XPS來分析薄膜特性。
    實驗係使用自製的陶金靶材,以濺鍍功率70瓦、固定沉積溫度及固定氬氣流量,製備不同Ag含量之n-Ag/MoSx (n= 0、1、2、3與4)薄膜。實驗結果顯示,薄膜表面呈現直立薄片狀結構。XRD量測得知,n-Ag/MoSx (n= 0、1、2、3與4)薄膜主要繞射峰屬於Hexagonal結構的2H-MoS2其(100)平面之繞射所貢獻。拉曼量測結果得知,不論添加銀與否,其特徵峰皆為MoSx之特徵峰,由TEM結果得知,發現添加之銀皆成極小奈米銀,量多且大小均勻,因此非高解析之檢測難以發現其存在。
    由電化學性質量測結果得知,3-Ag/MoSx薄膜具有最佳之電化學特性,LSV量測中有著相當低的42 mV/dec Tafel斜率值,EIS阻抗量測僅2.59 ohm之低阻抗,CV量測中有最高雙層電容值58.1μF/cm2,在CstV穩定度量測中也有相當良好的高電流穩定度。


    In this research, Ag/MoSx thin film electrodes with different Ag contents were used for electrocatalytic hydrogen evolution reaction (HER). The thin films were deposited on carbon fiber paper (CFP) by radio-frequency (RF) sputtering technique, while the Ag/MoS2 target was prepared using home-made hot press machine in our laboratory. In this experiment, besides the variation of Ag contents, different sulfides and oxides were also added in the target to observe their effects to electrochemical properties of the thin films. All the thin film properties were characterized and analyzed with XRD, SEM, TEM, RAMAN, XPS measurements, and electrochemical testing.
    n-Ag/MoSx (n= 0, 1, 2, 3, and 4) thin films were deposited on CFP and Si(100) substrates at 300 oC with RF output power at 70 watt. The deposition of the thin films on Si (100) was carried out for characterization purposes only without testing for the electrochemical properties. The Ag/MoSx thin films exhibited a columnar-growth morphological feature that was possibly excellent for electrocatalytic HER due to the exposure of the active edge sites. XRD pattern showed that the growth preferential orientation of n-Ag/MoSx (n= 0, 1, 2, 3, and 4) thin films was (100) plane of MoS2 structure. Raman measurement also showed all the thin films exhibited the characteristic peak of MoS2, regardless of the silver contents.
    According to the electrochemical measurements, the 3-Ag/MoSx thin film electrode exhibited the best properties for HER, as compared to other thin films with different Ag contents. The LSV measurement showed a relatively low Tafel slope of 42 mV/dec and EIS impedance measurement indicated low electron transfer resistivity of 2.59 ohm. Furthermore, CV measurement also revealed the thin film electrode had the highest double layer capacity (Cdl) of 58.1μF/cm2, which implied higher actively electrochemical surface area. Finally, the tests with different overpotentials also showed high stability of the thin film at high current density, which possibly can be applied for long-term industrial application.

    目錄 中文摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章、 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章、 文獻回顧與原理 5 2.1 二硫化鉬的介紹 5 2.1.1 增加活性位點表面積方面 6 2.1.2 提升電特性方面 11 2.1.3 產氫(HER)方面 13 第三章、實驗方法與步驟 24 3.1實驗材料及規格 24 3.2實驗儀器說明 26 3.2.1 分析電子天平 26 3.2.2 真空烘箱 26 3.2.3 RF磁控濺鍍系統 26 3.2.4 真空熱壓機 27 3.2.5 球磨機 27 3.2.6 超音波震盪機 28 3.3實驗步驟 29 3.3.1 粉體篩選 29 3.3.2 靶材粉末配置 30 3.3.3 熱壓靶材 32 3.3.4 基板裁切與清洗 33 3.3.5 薄膜濺鍍 34 3.3.6 薄膜特性量測 34 3.4 分析儀器介紹及量測參數 35 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 35 3.4.2 顯微拉曼光譜儀 (Micro-Raman spectrometer) 37 3.4.3 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FESEM) 38 3.4.4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 40 3.4.5 三電極電化學反應量測系統 41 第四章、結果與討論 44 4.1 粉體篩選之量測與探討 45 4.1.1 不同催化粉體之篩選 45 4.1.2 電催化粉體摻雜金屬之篩選 47 4.2 改變Ag含量之n-Ag/MoSx薄膜之電化學性質分析及探討 49 4.2.1 改變Ag含量之n-Ag/MoSx薄膜之LSV量測 49 4.2.2 改變Ag含量之n-Ag/MoSx薄膜之EIS特性分析 55 4.2.3 改變Ag含量之n-Ag/MoSx薄膜之CV量測 58 4.2.4 改變Ag含量之n-Ag/MoSx薄膜之CstV量測 61 4.3 不同硫化物與氧化物對2-Ag/MoSx添加之薄膜電化學性質分析 63 4.3.1 不同硫化物與氧化物添加對2-Ag/MoSx薄膜之LSV量測 63 4.3.2 不同硫化物與氧化物添加對2-Ag/MoSx薄膜之EIS量測 65 4.3.3 不同硫化物與氧化物添加對2-Ag/MoSx薄膜之CV量測 67 4.4 改變Ag含量之n-Ag/MoSx薄膜之表面結構及成分分析 70 4.4.1 改變Ag含量之n-Ag/MoSx薄膜成分分析 70 4.4.2 改變Ag含量之n-Ag/MoSx薄膜SEM分析 73 4.4.3 改變Ag含量之n-Ag/MoSx薄膜XRD分析 77 4.4.4 改變Ag含量之n-Ag/MoSx薄膜拉曼分析 79 4.4.5 改變Ag含量之n-Ag/MoSx薄膜XPS分析 81 4.4.6 改變Ag含量之n-Ag/MoSx薄膜TEM分析 85 第五章、結論 91 第六章、參考文獻 96

    1. Farhad, S., Majid, S.-A., and Maryam, Y.-S., Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis. International Journal of Energy Research, 2008. 32(1): p. 1-11.
    2. 林國興,賴建銘,張嵩駿,林俊男, 氫能趨勢分析與儲能應用新思維. 工業材料雜誌376期, 2018.
    3. Lau, T.H.M., Lu, X.W., Kulhavý, J., Wu, S., Lu, L., Wu, T.-s., Kato, R., Foord, J.S., Soo, Y.-l., Suenaga, K.T., and, Edman, S.C., Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chemical Science, 2018. 9(21): p. 4769-4776.
    4. Ansar, S.M. and Kitchens, C.L., Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol. ACS Catalysis, 2016. 6(8): p. 5553-5560.
    5. El-Bahy, Z.M., Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. Applied Catalysis A: General, 2013. 468: p. 175-183.
    6. Lin, F.-h. and Doong, R.-A., Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts. Applied Catalysis A: General, 2014. 486: p. 32-41.
    7. Majafpour, M.N., Madadkhani, S., and Tavahodi, T., Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water-splitting systems: 3-Electrochemical studies. International Journal of Hydrogen Energy, 2016. 42: p. 60-67.
    8. Pan, C., Takata, T., and Domen, K., Overall Water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chemistry – A European Journal, 2016. 22(5): p. 1854-1862.
    9. Ha, E., Lee, L.Y.S., Wang, J., Li, F., Wong, K.-Y., and, Tsang, S.C.E., Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Advanced Materials, 2014. 26(21): p. 3496-3500.
    10. Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H., and, Kudo, A., Novel stannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation. Chemistry of Materials, 2010. 22(4): p. 1402-1409.
    11. Abdullah, H., Kuo, D.-H., and Chen, X., High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution. International Journal of Hydrogen Energy, 2017. 42(9): p. 5638-5648.
    12. Hinnemann, B., Moses, P.G., Bonde, J., Jargensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, L., and, Norskov, J.K., Biomimetic hydrogen evolution:  MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 2005. 127(15): p. 5308-5309.
    13. Benck, J.D ,Hellsten, T.R., Kibsgaard,J., Chalthranont, P., and, Jaramillo, T.F., Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 2014. 4(11): p. 3957-3971.
    14. Jaramillo, T.F., Jargensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., and, Chorkendorff, I., Identification of active edge sites for electrochemical H2 evolution from MoS2 Nanocatalysts. Science, 2007. 317(5834): p. 100-102.
    15. Merki, D., Vrubel, H., Rovelli, L., Fierro, S., and, Hu, X., Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science, 2012. 3(8): p. 2515-2525.
    16. Ge, P., Scanlon, M.D., Peljo, J., Bian, X., Vubrel, H., O'Neil, A., Coleman, J.N., Cantoni, M., Hu, X., Kontturi, K., Liu, B., and, Girauly, H.H., Hydrogen evolution across nano-schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chemical Communications, 2012. 48(52): p. 6484-6486.
    17. Liao, L., Zhu, J., Biam, X., Zhu, L., Scanlon, M.D., Girault, H.H., and Liu, B., MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Advanced Functional Materials, 2013. 23(42): p. 5326-5333.
    18. Hossain, M.A., Abdul Gafur, M., Gulshan, F., and Syed Wais Kurny, A., Electrochemical investigation of the corrosion behavior of heat treated Al-6Si-0.5Mg-xCu (x=0, 0.5 and 1) alloys. Intermational Journal of Corrosion, 2015. 5: p 1-8.
    19. Mattheiss, L.F., Band structures of transition-metal-dichalcogenide layer compounds. Physical Review B, 1973. 8(8): p. 3719-3740.
    20. Tao, J.,Chai, J., Lu, X., Wong, L.M., Wong, T.I., Pan, J., Xiong, Q., Chi, D., and Wang, S., Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale, 2015. 7(6): p. 2497-2503.
    21. Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., and Suenaga, K., Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nature Nanotechnology, 2014. 9: p. 391-396.
    22. Santos, V.P., Van Der Linden, B., Chojecki, A., Budroni, G., Corthals, S., Shibata, H., Meima, G.R., Kapteijn, F., Makkee, M., and Gascon, J., Mechanistic insight into the synthesis of higher alcohols from syngas: the role of k promotion on MoS2 catalysts. ACS Catalysis, 2013. 3(7): p. 1634-1637.
    23. Yang, Y.Q., Tye, C.T., and Smith, K.J., Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols. Catalysis Communications, 2008. 9(6): p. 1364-1368.
    24. Yoosuk, B., Tumnantong, D., and Prasassarakich, P., Unsupported MoS2 and CoMoS2 catalysts for hydrodeoxygenation of phenol. Chemical Engineering Science, 2012. 79: p. 1-7.
    25. Deng, D., Novoselov, K.S., Fu, Q., Zheng, N., Tian, Z., and Bao, X., Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016. 11: p. 218-230.
    26. Yuwen, L., Xu, F., Xue, B., Kou, Z., Zhang, O., Bao, B., Su, S., Weng, L., Huangg, W., and Wang, L., General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd–MoS2 for methanol oxidation. Nanoscale, 2014. 6(11): p. 5762-5769.
    27. Huang, H., Feng, X., Du, C., Wu, S., and Song, W., Incorporated oxygen in MoS2 ultrathin nanosheets for efficient ORR catalysis. Journal of Materials Chemistry A, 2015. 3(31): p. 16050-16056.
    28. Voorhoeve, R.J.H., and Stuiver, J.C.M., The mechanism of the hydrogenation of cyclohexene and benzene on nickel-tungsten sulfide catalysts. Journal of Catalysis, 1971. 23(2): p. 243-252.
    29. Hagenbach, G., Courty, P., and Delmon, B., Physicochemical investigations and catalytic activity measurements on crystallized molydbenum sulfide-cobalt sulfide mixed catalysts. Journal of Catalysis, 1973. 31(2): p. 264-273.
    30. Han, B. and Y.H. Hu, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Science & Engineering, 2016. 4(5): p. 285-304.
    31. Moser, J., Lévy, F., and Busy, F., Composition and growth mode of MoSx sputtered films. Journal of Vacuum Science & Technology A, 1994. 12(2): p. 494-500.
    32. Kibsgaard, J.,Chen, Z., Reinecke, B.N., and Jaramillo, T.F., Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 2012. 11: p. 963-969.
    33. Kong, D., Wang, H., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., and Ciu, Y., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters, 2013. 13(3): p. 1341-1347.
    34. Xie, J., Zhang, H., Li, S., Wang, R., Sun, X., Zhou, M., Zhou, J., Lou, X.W., and Xie, Y., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013. 25(40): p. 5807-5813.
    35. Wang, S., Jiang, X., Zheng, H., Wu, H., Kim, S.-J., and Feng, C., Solvothermal synthesis of MoS2/carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nanoscience and Nanotechnology Letters, 2012. 4(4): p. 378-383.
    36. Yuan, H., Yuan, H., Li, J., Yuan, C., and He, Z., Facile Synthesis of MoS2@CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem, 2014. 1(11): p. 1828-1833.
    37. Lukowski, M.A., Daniel, A.S., Meng, F., Forticaux, A., Li, L., and Jin, S., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of the American Chemical Society, 2013. 135(28): p. 10274-10277.
    38. Zhang, K., Kim, H.-J., Lee, J.-T., Chang, G.-W., Shi, X., Kim, W., Ma, M., Kong, K.-J., Choi, J.-M., Song, M.-S., and Park, J.H., Unconventional pore and defect generation in molybdenum disulfide: application in high-rate lithium-ion batteries and the hydrogen evolution reaction. ChemSusChem, 2014. 7(9): p. 2489-2495.
    39. Bhimanapati, G.R., Hankins, T., Lei, Y., Vila, R.A., Fuller, I., Terrones, M., and Robinson, J.A., Growth and tunable surface wettability of vertical MoS2 layers for improved hydrogen evolution reactions. ACS Applied Materials & Interfaces, 2016. 8(34): p. 22190-22195.
    40. Lin, L., Miao, N., Wen, Y., Zhang, S., Ghosez, P., Sun, Z., and Allwood, D.A., Sulfur-depleted monolayered molybdenum disulfide nanocrystals for superelectrochemical hydrogen evolution reaction. ACS Nano, 2016. 10(9): p. 8929-8937.
    41. Han, X., Tong, X., Liu, X., Chen, A., Wen, X, Tang, N, and Guo, X.-Y., Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catalysis, 2018. 8(3): p. 1828-1836.
    42. De Levie, R., On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochimica Acta, 1963. 8(10): p. 751-780.
    43. Taberna, P.L., Simon, P., and Fauvarque, J.F., Fauvarque Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of The Electrochemical Society, 2003. 150(3): p. A292-A300.
    44. Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Bailargeat, D., From bulk to monolayer MoS2: evolution of raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
    45. Moulder, J.F., Handbook of X-Ray photoelectron spectroscopy. physical electronics, 1995: p. 230-232.
    46. Shalvoy, R.B., Fisher, G.B., and Stiles, P.J., Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission. Physical Review B, 1977. 15(4): p. 1680-1697.
    47. Hong, J., Hu, Z., Matt, P., Li, K., Lv, D., Yang, X., Gu, L., Mao ,N., Feng, Q., Xie, L., Zhang, J., Wu, D., Zhang, Z., Jin, C., Ji, W., Zhang, X., Yuan, J., and Zhang, Z., Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015. 6: p. 6293-6301.

    QR CODE