簡易檢索 / 詳目顯示

研究生: 彭易玄
YI-HSUAN PENG
論文名稱: 以硫化鋅保護層改良銀銦硫光觸媒薄膜之光化學穩定性評估
Evaluation of the photochemical stability of Ag-In-S photocatalyst thin film modified with ZnS protective layer
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 曾堯宣
Yao-Hsuan Tseng
吳錦貞
Ching-Chen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 薄膜太陽能分解水產氫光觸媒保護層化學水浴法
外文關鍵詞: thin film, solar water splitting hydrogen production, photocatalyst, protective layer, chemical bath deposition
相關次數: 點閱:224下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    利用光電化學電池(PEC cell)系統分解水產生氫氣,為提供乾淨且可再生之能源的一種新穎方法。由於太陽光中約有45%屬於可見光波段,PEC系統中之光觸媒材料,也以朝製備可見光應答型光觸媒之方向最為蓬勃發展。和粉體光觸媒相較下,以半導體薄膜作為光電極,利用PEC系統產氫的二大優點分別是:1. 可直接在陰極及陽極分別收集氫氣和氧氣,無須另外分離;2. 當光催化活性衰退時便於回收。在目前發現之各種半導體光觸媒薄膜之中,又以硫化物系列半導體之光催化性能優於氧化物系列半導體。
    本研究製備保護層材料以兩部分為主:第一部分,先以化學水浴沉積法(CBD)於氧化銦錫(ITO)導電玻璃基材表面製備銀銦硫(Ag-In-S)三元半導體薄膜,並藉由改變[Ag]/[In]之莫耳數比,利用低掠角XRD (GIXRD)分析,可分別得到AgInS2、AgIn5S8與AgInS2/AgIn5S8之混相薄膜結構。以三極式光電化學系統配合恆電位儀量測光電流值,在光強度為100 mW/cm2之可見光照射下,以AgInS2/AgIn5S8之混相薄膜結構,可得到之最大光電流值約為10 mA/cm2 at bias 1V vs. SCE ,而將此光電極薄膜置於犧牲試劑中進行穩定性測試,於照光一段時間後會發生光侵蝕的現象,並導致光電流之衰退。因此,本研究於第二部分即為了延長此銀銦硫光觸媒薄膜之使用壽命,而於此薄膜表面鍍一層保護層材料,最後選用硫化鋅為此保護層之材料,並分別使用濺鍍法與化學水浴法製備硫化鋅之半導體薄膜,並藉由調整硫化鋅之薄膜厚度,量測其物理、光學與光電流等特性,以篩選出最佳參數,最後測試其光電化學穩定性。


    ABSTRACT
    Hydrogen production by water splitting with photoelectrochemical cell (PEC cell) is one of novel ways to provide clean and renewable energy. Due to that visible light accounts for about 45% in sunlight, the visible light responded photocatalyst materials have been developed widely. Thin film as electrode in photoelectrochemical cell take advantage of that no need to separate hydrogen and oxygen and easy to recover, compared to powder materials. Among them, the performance of sulfide semiconductor is better than that of oxide semiconductor.
    In this study, Ag-In-S ternary semiconductor thin film prepared by chemical bath deposition (CBD) is the mixture phase of AgInS2/AgIn5S8, deposited on the surface of indium tin oxide conductive glass. The photoelectric conversion efficiency could be estimated with a photocurrent density test by a three-electrode system and a potentiostat. Under the visible light irradiation with intensity of 100 mW/cm2, the photocurrent density could be up to about 10 mA/cm2. However, photocorrosion of the thin film occurs in sacrificial reagents as electrolyte after irradiation for a while, and results in a photocurrent decay. To enhance the durability of the thin film, we attempts to coat a zinc sulfide (ZnS) film, which has a higher stability and absorbs no visible light, as a protective layer on the surface of Ag-In-S film. ZnS protective layer is prepared by sputtering and CBD respectively in this study. Thus, the effect of photocorrosion in Ag-In-S thin film could be reduced. The modified photocatalyst thin film with the protective layer shows an obvious enhancement in the durability without a serious decay in photocurrent.

    目錄 中文摘要.........................................................................................................................I 英文摘要.......................................................................................................................II 致謝..............................................................................................................................III 目錄..............................................................................................................................IV 圖索引..........................................................................................................................VI 表索引..........................................................................................................................IX 第一章 緒論..................................................................................................................1 1.1 前言..................................................................................................................1 1.2 光觸媒產氫技術簡介......................................................................................4 1.3 研究動機..........................................................................................................7 第二章 文獻回顧..........................................................................................................8 2.1 光觸媒..............................................................................................................8 2.1.1 光觸媒發展史........................................................................................8 2.1.2 光觸媒應用..........................................................................................13 2.2 可見光應答型光觸媒....................................................................................15 2.2.1 光觸媒改質..........................................................................................17 2.2.2 共觸媒..................................................................................................20 2.3 薄膜光觸媒材料............................................................................................22 2.3.1 銀銦硫(Ag-In-S)薄膜..........................................................................23 2.3.2 硫化鋅(ZnS)薄膜................................................................................24 第三章 實驗方法與步驟............................................................................................26 3.1 實驗藥品與材料............................................................................................26 3.2 實驗設備........................................................................................................27 3.3 實驗流程........................................................................................................28 3.3.1化學水浴法製備Ag-In-S薄膜.............................................................29 3.3.2 碳摻雜表面改質..................................................................................32 3.3.3以濺鍍硫化法製備硫化鋅保護層.......................................................34 3.3.4以化學水浴法製備硫化鋅保護層.......................................................34 3.4 分析方法與檢測儀器....................................................................................35 3.4.1 低掠角X光繞射儀 (GIXRD) ............................................................35 3.4.2 場發射掃描式電子顯微鏡 (FESEM) ...............................................36 3.4.3 能量散射光譜儀 (EDS) .....................................................................38 3.4.4 紫外光可見光光譜儀 (UV-VIS) .......................................................38 3.4.5 表面輪廓儀 (Stylus Profilometer) .....................................................39 3.4.6 霍爾效應量測系統 (Hall Effect Measurement System).. .................39 3.4.7 恆電位儀(光電效率量測系統) (Potentiostat) ....................................41 第四章 結果與討論....................................................................................................44 4.1化學水浴法製備Ag-In-S薄膜.......................................................................44 4.1.1 銀離子/銦離子莫耳數比對薄膜特性之影響.....................................44 4.1.2 厚度對薄膜特性之影響......................................................................51 4.1.3 Ag-In-S薄膜之穩定性.........................................................................55 4.2 碳摻雜表面改質............................................................................................56 4.2.1 表面形態分析......................................................................................56 4.2.2 光電流密度量測..................................................................................58 4.3 以濺鍍硫化法製備硫化鋅保護層................................................................62 4.3.1 硫化鋅薄膜性質分析..........................................................................62 4.3.2 硫化鋅薄膜之電性、光學性質與能帶架構........................................65 4.3.3 硫化鋅薄膜光電流密度量測..............................................................68 4.3.4 硫化鋅薄膜保護層之光穩定性測試..................................................72 4.4 以化學水浴法製備硫化鋅保護層................................................................73 4.4.1 硫化鋅薄膜性質分析..........................................................................73 4.4.2 硫化鋅薄膜之電性、光學性質與能帶架構........................................75 4.4.3 硫化鋅薄膜光電流密度量測..............................................................77 4.4.4 硫化鋅薄膜保護層之光穩定性測試..................................................80 第五章 結論................................................................................................................82 第六章 參考文獻........................................................................................................83

    第六章 參考文獻

    1. 經濟部能源局,http://www.moeaboe.gov.tw/oil102/
    2. Key World Energy Statistics International Energy Agency 2006-11-08
    3. Associated Press Newswires, 28 March 2011
    4. 峠田博史,光觸媒圖解,商周出版,台北 (2003)。
    5. Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 238, pp. 37 (1972)
    6. 東京応化科学技術振興財団の記念講演と懇親会,http://babarensei.coolblog.jp/blog/2010/06/_n.html
    7. Maeda, K. and Domen, K., “New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light”, Journal of Physical Chemistry C, Vol. 111, pp. 7851-7861 (2007)
    8. Sreethawong, T., Laehsalee, S. and Chavadej, S., “Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation”, International Journal of Hydrogen Energy, Vol. 33, No. 21, pp. 947-5957 (2008)
    9. Halmann, M., “Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells,” Nature, Vol. 275, pp. 115-116 (1978).
    10. Cheng, K. W., Huang, C. M., Pan, G. T., Chang, W. S., Lee, T. C. and Yang, T. C. K., “The physical properties and photoresponse of AgIn5S8 polycrystalline film electrodes fabricated by chemical bath deposition”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 190, No. 1, pp. 77-87 (2007)
    11. 吳錦貞,「I-III-VI/II-VI族可見光應答光觸媒材料之光電化學分析與水分解產氫應用」,博士論文,國立中正大學化學工程所,嘉義 (2008)。
    12. O'Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, pp. 737-740 (1991)
    13. 荒川裕則,水分解光触媒技術―太陽光と水で水素を造る―,CMC (2008)。
    14. 橋本和仁、藤嶋昭,図解光触媒のすべて,全華科技圖書,台北 (2006)。
    15. 林有銘,「奈米光觸媒原理與應用趨勢」,工研院南分院奈米粉體與薄膜科技中心,台南 (2008)。
    16. 藤嶋昭、橋本和仁、渡部俊也,圖解光觸媒,世茂出版有限公司,台北 (1997)。
    17. http://www.nrel.gov, Turner, J. A., Photoelectrochemical Water Splitting (2007)
    18. Kudo, A. and Miseki, Y., “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, Vol. 38, No. 209, pp. 253-278 (2009)
    19. Joong, K., Moon, D.W., Lee, S.K. and Jung, K.-J., “Formation of a highly oriented FeO thin film by phase transition of Fe3O4 and Fe nanocrystallines”, Thin Solid Films, Vol. 360, pp. 118-121 (2000)
    20. Kudo, A., “Photocatalysis and solarhydrogen production”, Pure and Applied Chemistry, Vol.79, pp. 1917-1927 (2007)
    21. Ingler Jr., W.B. and Khan, S.U.M., “Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination”, Thin Solid Films, Vol. 461, No. 2, pp. 301-308 (2004)
    22. Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D. and McFarland, E.W., Journal of Physical Chemistry C, Vol. 112, pp. 15900-15907 (2008)
    23. Umebayashi, T., Yamaki, T., Tanaka, S.and Asai, K., “Visible light-induced degradation of methylene blue on S-doped TiO2”, Chemistry Letters, Vol. 32, No. 4, pp. 330-331 (2003)
    24. Hara, M., Hitoki, G., Takata, T., Kondo, J. N., Kobayashi, H. and Domen, K., “TaON and Ta3N5 as new visible light driven photocatalysts”, Catalysis Today, Vol. 78, No. 1-4, pp. 555–560 (2003)
    25. Yamasita, D., Takata, T., Hara, M., Kondo, J. N. and Domen, K., “Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting”, Solid State Ionics, Vol. 172, No. 1-4, pp. 591–595 (2004)
    26. O'Regan, B., Schwartz, D.T., Zakeeruddin, S.M. and Grätzel, M., “Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics”, Advanced Materials, Vol. 12, No. 17, pp. 1263-1267 (2000)
    27. Bai, J., Li, J., Liu, Y., Zhou, B. and Cai, W., “A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays”, Applied Catalysis B, Vol. 95, No. 3-4, pp. 408-413 (2002)
    28. Yashima, M., Maeda, K., Teramura, K., Takata, T. and Domen, K., “Crystal structure and optical properties of (Ga1−xZnx)(N1−xOx) oxynitride photocatalyst (x = 0.13)”, Chemical Physics Letters, Vol. 416, No. 4-6, pp. 225-228 (2005)
    29. Kato, H. and Kudo, A., “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catalysis Today, Vol. 78, No. 1-4, pp. 561-569 (2003)
    30. Maruthamuthu, P. and Ashokkumar, M., “Hydrogen production with visible light using metal loaded-WO3 and MV2+ in aqueous medium”, International Journal of Hydrogen Energy, Vol. 14, No. 4, pp. 275-277 (1989)
    31. Sakata, T., Hashimoto and K., Kawai, T., “Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction”, Journal of Physical Chemistry, Vol. 88, No. 11, pp. 2344-2530 (1984)
    32. Delgado, G., Mora, A. J., Pineda, C. and Tinoco, T., “Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction”, Materials Research Bulletin, Vol. 36, No. 13-14, pp. 2507-2517 (2001)
    33. You, S. H., Hong, K. J., Youn, C. J., Jeong, T. S., Moon, J. D., Kim, H. S. and Park, J. S., “Origin of point defects in AgInS2/GaAs epilayer obtained from photoluminescence measurement”, Journal of Applied Physics, Vol. 90, No. 8, pp. 3894-3898 (2001)
    34. Akaki, Y., Kurihara, S., Shirahama, M., Tsurugida, K., Seto, S., Kakeno, T. and Yoshino, K., “Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method”, Journal of Physics and Chemistry of Solids, Vol. 66, No. 11, pp. 1858-1861 (2005)
    35. Makhova, L., Szargan, R. and Konovalov, I., “Investigation of the growth process and properties of CuIn5S8 and AgIn5S8 spinel thin films”, Thin Solid Films, Vol. 472, No. 1-2, pp. 157-163 (2005)
    36. Deivaraj, T. C., Park, J. H., Afzaal, M., O’Brien, P. and Vittal, J. J., “Single source precursors to ternary silver indium sulfide materials”, Chemical Communications, pp. 2304-2305 (2001)
    37. Lin, L. H., Wu, C. C. and Lee, T. C., “Growth of crystalline AgIn5S8 thin films on glass substrates from aqueous solutions”, Crystal Growth & Design, Vol. 7, pp. 2725-2732 (2007)
    38. Kudo, A., Kato, H. and Tsuji, I., “Strategies for the development of visible-light-driven photocatalysts for water splitting”, Chemistry Letters, Vol. 33, No. 12, pp. 1534 (2004)
    39. Xu, X. J., Fei, G. T., Yu, W. H., Wang, X. W., Chen, L. and Zhang, L. D., “Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method”, Nanotechnology, Vol. 17, pp. 426 (2006)
    40. Huang, H. F., “Investigation on composition and structure of ZnS : Mn evaporation films with sulfur supply”, Vacuum, Vol. 55, No. 2, pp. 127-131 (1999)
    41. Raji, P., Sanjeeviraja, C. and Ramachandran, K., “Thermal and optical properties of Cd1-xZnxS thin films by photoacoustics”, Journal of Materials Science, Vol. 41, pp. 5907-5914 (2006)
    42. Hsu, C. T., “Growth of ZnS : Tm thin films by MOCVD”, Journal of Crystal Growth, Vol. 208, No. 1-4, pp. 259-263 (2000)
    43. Summers, C. J., Tong, W., Tran, T. K., Ogle, W., Park, W. and Wagner, B. K., “Photoluminescence properties of ZnS epilayers grown by metalorganic molecular beam epitaxy ”, Journal of Crystal Growth, 159, No. 1-4, pp. 64-67 (1996)
    44. Gangopadhyay, U., Kim, K., Mangalaraj, D. and Yi, J., “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells ”, Applied Surface Science, Vol. 230, No. 1-4, pp. 364-370 (2004)
    45. Ichimura, M., Goto, F., Ono Y. and Arai, E., “Deposition of CdS and ZnS from aqueous solutions by a new photochemical technique ”, Journal of Crystal Growth, 198-199, pp. 308-312 (1999)
    46. Kovtyukhova, N. I., Buzaneva, E. V., Waraksa, C. C. and Mallouk, T. E., “Ultrathin nanoparticle ZnS and ZnS: Mn films: surface sol–gel synthesis, morphology, photophysical properties”, Materials Science and Engineering B, Vol. 69-70, pp. 411-417 (2000)
    47. Lokhande, C. D., Pathan, H. M., Giersig, M., and Tributsch, H., “Preparation of Znx(O,S)y thin films using modified chemical bath deposition method”, Applied Surface Science, Vol. 187, No. 1-2, pp. 101-107 (2002)
    48. Nair, P. K. and Nair, M. T. S., “Chemically deposited ZnS thin films: application as substrate for chemically deposited Bi2S3, CuxS and PbS thin films”, Semiconductor Science and Technology, Vol. 7, No. 2, pp. 239-244 (1992)
    49. Crystal Structures, http://www.geocities.jp/ohba_lab_ob_page/Structure.html
    50. Interactive Minerals, http://www.luc.edu/faculty/spavko1/minerals/index.htm
    51. Yang, S.-m., Huang, C.-h., Zhai, J., Wanga, Z.-s. and Jiang, L., “High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides”, Journal of Materials Chemistry, Vol. 12, pp. 1459–1464 (2002)
    52. Goudarzi, A., Aval, G. M., Sahraei, R. and Ahmadpoor, H., “Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells”, Thin Solid Films, Vol. 516, No. 15, pp. 4953-4957 (2008)
    53. 汪建民,材料分析,中國材料科學學會,台北 (1998)。
    54. NTUST Department of Materials Science and Engineering, http://tx2.ntust.edu.tw/ezcatfiles/tx2/img/img/1047/D8DISCOVERX-rayDiffractometer.pdf
    55. 國立交通大學應用化學系,http://www.ac.nctu.edu.tw/intro/property.php?Sn=9#
    56. 原力精密儀器股份有限公司,http://www.fpic.com.tw/product_04.html
    57. 潘信宇,「以PEDOT nanorod為介面緩衝層的高分子太陽能電池之研究」,碩士論文,國立中山大學光電工程研究所,高雄 (2008)。
    58. ホール効果 - Wikipedia, http://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%BC%E3%83%AB%E5%8A%B9%E6%9E%9C
    59. Waldner, G., Brüger, A., Gaikwad, N. S. and Neumann-Spallart, M., “WO3 thin films for photoelectrochemical purification of water”, Chemosphere, Vol. 67, pp. 779-784 (2007)
    60. Yamaguchi, K., Yoshida, T. and Minoura, H., “Structural and compositional analyses on indium sulfide thin films deposited in aqueous chemical bath containing indium chloride and thioacetamide”, Thin Solid Films, Vol. 431-432, pp. 354-358 (2003)
    61. Rodríguez, A. N., Nair, P. K. and Nair, M. T. S., “Structural, optical and electrical properties of chemically deposited silver sulfide thin films”, Semiconductor Science and Technology, Vol. 20, pp. 576 (2005)
    62. Akaki, Y., Kurihara, S., Shirahama, M., Tsurugida, K., Kakeno, T. and Yoshino, K., Journal of Materials Science: Materials in Electronics, Vol. 16, pp. 393 (2005)

    無法下載圖示 全文公開日期 2016/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE