簡易檢索 / 詳目顯示

研究生: 陳鴻志
Hom-chi Chen
論文名稱: 添加微量鉛在無鉛合金銲料與銅基材之界面反應影響與機械性質的研究
The Effect of Minor Pb Additions on Interfacial Reactions and Mechanical Properties between Lead-free Solders and Cu Substrate
指導教授: 李嘉平
Chiapyng Lee
顏怡文
Yee-wen Yen
口試委員: 陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 171
中文關鍵詞: 界面反應微量鉛污染無鉛銲料
外文關鍵詞: interfacial reactions, minor lead contaminant, lead-free solders
相關次數: 點閱:245下載:71
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銀-錫-銅三元合金與錫-鉍二元合金為現今工業中常用之無鉛銲料。在無鉛銲錫棒材上使用後都會發現含有少量的鉛,而後會對對其電子元件造成鉛污染。本研究主要著重於探討銀-錫-銅和錫-鉍兩種無鉛銲料在添加微量鉛後與銅基材之在不同溫度與反應時間下之界面形態與反應機制之探討。此外,含鉛量對銲點機械強度也是本研究所預明瞭的現象。
    在界面形態部分,銀-錫-銅-鉛和錫-鉍-鉛合金系統生成之Cu6Sn5與Cu3Sn兩層介金屬相厚度隨著反應時間、含鉛量與溫度增加而增厚。銀-錫-銅-鉛合金系統中為貝殼狀之Cu6Sn5相厚度較厚;錫-鉍-鉛合金系統中為平坦狀之Cu3Sn相厚度較厚。
    在反應控制步驟部分,銀-錫-銅-鉛合金系統在240℃隨反應時間增加皆為晶界控制;升溫至270℃後隨反應時間增加,反應控制步驟由擴散控制變為晶界控制;溫度升高到285℃後隨反應時間增加,反應控制步驟由晶界控制變為同時受晶界控制與擴散控制所影響。錫-鉍-鉛合金系統於240℃時隨反應時間增加由同時受晶界控制與擴散變為界面反應控制;升溫至270℃後隨反應時間增加皆為同時受到晶界控制與擴散控制所影響;溫度升高到285℃後隨反應時間增加,由同時受到晶界控制與擴散控制轉變為晶界控制。
    在接點強度機械性質量測部分,銀-錫-銅-鉛合金系統在相同反應時間、不同溫度下,機械強度隨鉛含量增加而減少;錫-鉍-鉛系統在相同溫度、不同反應時間下,機械強度亦隨鉛含量增加而減少。


    Sn-Ag-Cu ternary and Sn-Bi binary alloys are commercial lead-free solders and widely used in electronic industries. The minor lead would be found in lead-free solder rods after using them, then it makes the lead contaminant for the electronic components. The experimental results emphasize that minor lead additions on interfacial morphology and reaction mechanism at different temperature and reaction times. Besides, lead content for the contacting strength is also the phenomenon expected from the experimental results.
    In first part of the interfacial morphology, the two thicknesses of two intermetallic compounds which one is Cu6Sn5 and the other is Cu3Sn form in Sn-Ag-Cu-Pb / Cu and Sn-Bi-Pb / Cu couples increase with the reaction times, lead content and temperature. Cu6Sn5 for Sn-Ag-Cu-Pb / Cu couple is thicker but Cu3Sn for Sn-Bi-Pb / Cu couple is thicker.
    In second part of the reaction controlled step, for Sn-Ag-Cu-Pb / Cu couple, it has the grain boundary controlled with increasing the reaction times at 240℃, up to 270℃, it changes from diffusion controlled to grain boundary controlled, and it would change from grain boundary controlled to grain boundary and diffusion mixed controlled when the temperature is 285℃. For Sn-Bi-Pb / Cu couple, it changes from grain boundary and diffusion mixed controlled to grain boundary controlled with increasing the reaction times at 240℃, up to 270℃, it has the grain boundary and diffusion mixed controlled, and it would change from grain boundary and diffusion mixed controlled to grain boundary controlled when temperature is 285℃.
    In final part of contacting strength for tensile test, the mechanical strength for Sn-Ag-Cu-Pb / Cu couple decreases with increasing the lead content at the same reaction times and different temperature, and it for Sn-Bi-Pb / Cu couple also decreases with increasing the lead content at the same temperature and different reaction times.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………III 誌謝………………………………………………………………………V 目錄………………………………………………………………………VI 圖目錄……………………………………………………………………IX 表目錄…………………………………………………………………XVII 第一章 前言……………………………………………………………1 第二章 文獻回顧………………………………………………………4 2-1 無鉛銲料的概述………………………………………………4 2-2 擴散理論與界面反應…………………………………………9 2-2.1 擴散理論與機制……………………………………………9 2-2.2 界面反應……………………………………………………15 2-2.3 界面反應控制步驟…………………………………………18 2-3 無鉛銲料合金/基材反應偶之界面反應………………………20 2-3.1 銀-錫-銅/銅反應偶之界面反應……………………………20 2-3.2 錫-鉍/銅反應偶之界面反應………………………………21 2-3.3 有鉛與無鉛銲料的混合使用與鉛污染……………………23 2-3.4 有鉛銲錫與銅基材的界面反應與錫-銅-鉍相圖相關研究……25 2-4 界面接點機械強度……………………………………………28 第三章 實驗方法………………………………………………………32 3-1 界面反應……………………………………………………32 3-1.1 合金製備與處理…………………………………………32 3-1.2 合金分析…………………………………………………34 3-2 機械性質量測………………………………………………36 3-2.1 合金製備與處理…………………………………………36 3-2.2 萬能拉力機參數設定……………………………………38 3-2.3 拉伸試驗…………………………………………………38 3-2.4 試片分析…………………………………………………40 第四章 結果與討論……………………………………………………41 4-1 銀-錫-銅銲料與銅之界面形態……………………………41 4-1.1 銀-錫-銅銲料與銅之界面形態…………………………41 4-1.2 銀-錫-銅銲料與銅之界面動力學………………………63 4-1.3 銀-錫-銅銲料與銅之反應動力學探討…………………67 4-2 錫-鉍銲料與銅之界面形態…………………………………75 4-2.1 錫-鉍銲料與銅之界面形態………………………………75 4-2.2 錫-鉍銲料與銅之界面動力學……………………………102 4-2.3 錫-鉍銲料與銅之反應動力學探討………………………105 4-3 銀-錫-銅銲料與銅接點之拉伸行為…………………………114 4-3.1 銀-錫-銅銲料與銅接點之斷裂面探討……………………114 4-3.2 銀-錫-銅銲料與銅接點之應力探討………………………123 4-4 錫-鉍銲料與銅接點之拉伸行為………………………………127 4-4.1 錫-鉍銲料與銅接點之斷裂面探討…………………………127 4-4.2 錫-鉍銲料與銅接點之應力探討……………………………134 第五章 結論…………………………………………………………138 第六章 參考文獻……………………………………………………140 附錄………………………………………………………………………i

    1.Lau, John H., Liu,and Katrina, “Global Trends in Lead-free Soldering part II of a II-part series on lead-free”, Advanced Packaging, Vol. 13, pp. 25-28 (2004).

    2.白蓉生, “無鉛銲料的到來與因應” (2003).

    3.P. Shewmon, “Diffusion in Solid”, 2nd edtion, Minerals Metals & Materials Society, Warrendale Pennsylvania (1989).

    4.R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd edtion, PWS Publishing Company, Boston (1994).

    5.材料科學基礎第六章-固體中的擴散, http://219.221.220.61/2005/308/7_text/6.pdf.

    6.C. L. Taso and S. W. Chen, “Interfacial reactions in the liquid diffusion couples of Mg/Ni, Al/Ni and Al/(Ni)-Al2O3 systems”, Journal of Materials Science, Vol. 30, pp.5215-5222, (1995).

    7.K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic Thin Film Science for Electrical Engineers and Materials Scientists”, Macmillan, New York.

    8.顏怡文, “銀-錫/銅與銀-錫/金系統之相平衡與界面反應的研究”, 國立清華大學化學工程系91年.

    9.C. M. Miller, I. E. Anderson and J. F. Smith, “A Viable Tin-Lead Solder Subsititude: Sn-Ag-Cu”, Journal of Electronic Materials, Vol. 23, pp. 595-601 (1997).

    10.A. D. Romig Jr., “Unpublished research”, Sandia National Laboratories (1986).

    11.A. D. Romig Jr., F. G. Yost and P. F. Hlava, Mircrobeam Analysis-1984, ed.A.D. Romig Jr. and J.I. Goldstein, San Francisco Press, CA (1984).

    12.John H. L. Pang, Kithva H. Prakash, and T. H. Low, “Isothermal and Thermal Cycling Aging on IMC Growth rate in Pb-free and Pb-based Solder interfaces”, Inter Society Conference on Thermal Phenomena, pp. 109-115 (2004).

    13.M. Schaefer, R. A. Fournelle, and J. Liang, “Theory for Intermetallic Phase Growth Between Cu and Liquid Sn-Pb Solder Based on Grain Boundary Diffusion Control”, Journal of Electronic Materials, Vol. 27, pp. 1167 (1998).

    14.H. K. Kim and K. N. Tu, “Kinetic Analysis of the Soldering Reaction Between Eutectic SnPb alloy and Cu accompanied by ripening”, Physical Reviews B, Vol. 53, pp. 16027-16033 (1996).

    15.Zhuo-Ming Guan, Guo-Xun Liu, and Tao Liu, “Kinetics of Interface Reaction In 40Sn-Bi/Cu and 40Sn-Bi-2Ag/Cu Systems During Aging In Solid State”, IEEE Transactions on Advanced Packing, Vol. 23, (2000).

    16.K. Fujiwara, M. Ohtani, T. Isu, S. Mango, R. Kawanaka, and K. Shimizu, “Interfacial reaction in bimetallic Sn/Cu thin films”, Thin Solid Films, Vol. 70, pp. 153-161 (1980).

    17.F. Bartels, J. W. Morris, Jr., G. Dalke, and W. Gust, “Intermetallic phase formation in thin solid-liquid diffusion couples”, Journal of Electronic Materials, Vol. 23, pp. 787-790 (1994).

    18.K. N. Tu, “Cu/Sn interfacial reactions : thin-film case versus bulk case”, Materials Chemistry and Physics, Vol. 46, pp. 217-223 (1996).

    19.B. S. Berry and I. Ames, “IBM Journal of research and development”, Vol. 13, No. 286 (1969).

    20.P. A. Totta and R. P. Sopher, “IBM Journal of research and development”, Vol. 13, No. 226 (1969).

    21.H. K. Kim, K. N. Tu, and P. A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers”, Applied Physics Letters, Vol. 68, pp. 2204-2206 (1996).

    22.S. P. Gupta and D. Rathor, Zeitschrift für Metallkunde, “Kinetics of growth of intermetallics in the Cu-Sn system”, Vol. 93, pp. 516-522 (2002).

    23.H. C. Bhedwar, K. K. Ray, S. D. Kulkarni, and V. Balasubramanian, “Kirkendall effect studies in copper-tin diffusion couples”, Scripta Metallurgica, Vol. 6, pp. 919-922 (1972).

    24.H. Oikawa and A. Hosoi, “Interdiffusion in Cu-Sn solid solutions. confirmation of anomalously large kirkendall effect”, Scripta Metallurgica, Vol. 9, pp. 823-828 (1975).

    25.M. Onishi and H. Fujibuchi, “Reaction-diffusion in the Cu-Sn system”, Transactions of the Japan Institute of Metals, Vol. 16, pp. 539-547 (1975).

    26.吳蒔涵,“錫中微量銅、鎳添加對錫/鎳與錫/銅界面反應之影響”, 國立清華大學化工系91年.

    27.J. London and D. W. Ashall, “Compound growth and fracture at copper/tin-silver solder interfaces”, Brazing and Soldering, pp. 49-55 (1986).

    28.D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, “Activation energies of intermetallic growth of Sn-Ag eutectic solder on copper substrates”, Journal of Electronic Materials, Vol. 26, pp. 883-887 (1997).

    29.S. Choi, T. R. Bieler, J. R. Lucas, and K. N. Subramanian, “Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging”, Journal of Electronic Materials, Vol. 28, pp. 1207-1215 (1999).

    30.李泳泰, “比較有鉛銲錫與無鉛銲錫在表面黏著技術之應用”, 私立中原大學化學系93年.

    31.Fay Hua, Zequn Mei, and Judy Glazer, “Eutectic Sn-Bi as an Alternative to Pb-free Solders”, in Process of IEEE Electronic Components and Technology Conference, pp. 277-283 (1998).

    32.J. Glazer, “Metallurgy of low temperature Pb-free solders for electronic assembly”, International Materials Reviews, Vol. 1, pp. 65-93 (1995).

    33.H. Schumann, Metallographie, (VEB Verlag, Leipzig, 1974) pp. 277-283.

    34.L. E. Felton, C. H. Raeder, and D. B. Knorr, “Microstructural Evolution and Mechanical Properties of Sn-Bi based Solders”, JOM, Vol. 45, pp. 119-127 (1993).

    35.J.W. Morris, Jr., J.L. Freer Goldstein, and Z. Mei, “Microstructural and Mechanical Properties of Sn-In and Sn-Bi Solder”, JOM, pp. 25-27 (1997).

    36.P. T. Vianco, A. C. Kilgo, and R. Grant, “Intermetallic compound layer growth by solid state reactions between 58Bi-42Sn solder and copper”, Journal of Electronic Materials, Vol. 24, pp. 1493-1505 (1995).

    37.C. H. Raeder, L. E. Felton, D. B. Knorr, G. B. Schmeelk, and D. Lee, “Microstructural evolution and mechanical properties of Sn-Bi based solders”, IEEE/CHMT European International Electronic Manufacturing Technology Symposium, pp. 119-127 (1993).

    38.W. J. Tomlinson and I. Collier, “The Mechanical Properties and Microstructure of Copper and Brass Joints Soldered with Eutectic Tin-Bismuth Solder”, Journal of Materials Science, pp. 1835-1839, 22 (1987).

    39.Peter Biocca, “無鉛和RoHS執行”, http://www.emsnow.com/npps/story.cfm?ID=13693 (2005).

    40.R. Strauss and S. Smernos, “The Bulletin of the Bismuth Institute”, Vol. 49, pp. 1-4 (1986).

    41.Atso Forsten, Hector Steen, Ian Wilding, and Jurgen Friedrich, “Development and validation of lead-free wave soldering process”, Soldering and Surface Mount Technology, pp. 29-34 (2000).

    42.John H. Lau, C. P. Wang, N. C. Lee, and S. W. Ricky-Lee, ”Electronics Manufacturing”, chapter 16, McGraw-Kill.

    43.U. R. Kattner, Kil-Won Moon, Willian J. Boettinger, Carol A. Handwerker, and Doh-Jae Lee, “The Effect of Pb Contamination on the Solidification Behavior of Sn-Bi Solders”, Published in Journal of Electronic Material, Vol. 30, pp. 45-52 (2001).

    44.W. Kurz and D. J. Fisher, Fundamentals of Solidification, (Switzerland : Trans Tech SA, 1984 ).

    45.W. J. Boettinger, C. A. Handwerker, B. Newbery, and T. Y. Pan, “Observation of Fillet Lifting in Sn-Bi Alloys”, Unpublished research.

    46.F. W. Gayle, “High temperature lead-free solder for microelectronics”, JOM, Vol. 53, pp. 17-21 (2001).

    47.U. R. Kattner and C. A. Handwerker, “Effect of Pb contamination on the solidification behavior of Sn-Bi solders”, Journal of Electronic Materials, Vol. 30, pp. 45-52 (2001).

    48.薛競成, “無鉛焊接的品質和可靠性(二)”, 現代表面黏著資訊 (2005).

    49.Qinong Zhu, Mei Sheng, and Le Luo, “The effect of Pb contamination on the microstructure and mechanical properties of SnAg/Cu and SnSb/Cu solder joints in SMT”, Soldering & Surface Mount Technology, pp. 19-23 (2000).

    50.C.Y. Liu and K.N. Tu, “Morphology of wetting reaction of SnPb alloys on Cu as a function of alloy composition”, Journal of Materials Research, Vol. 13, pp. 37-44 (1998).

    51.H. K. Kim and K. N. Tu, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafers”, Applied Physics Letters, Vol. 66, pp. 22054-22060 (1995).

    52.P. Villars, A. Prince, and H. Okamoto(editor), “Handbook of Ternary Alloy Phase Diagrams”, Vol. 5, (Materials Park, OH : ASM International, 1995), pp. 6373-6380.

    53.H. L. Pang John, Hong Tan Kwang, Xunqing Shi, and Z.P. Wang, "Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen", Transactions on Component and Packaging Technologies, Vol. 24, pp. 10-15 (2001).

    54.Fay Hua, C. Michale Garner, H. G. Song, and J. W. Morris, "Creep of Pb-Free Solders", Intel Papers (2001).

    55.ASTM F1269-89, "Test Methods for Destructive Shear Testing of BallBonds", American Society for testing of Materials (1995).

    56.N. E. Dowling, “Mechanical Behavior of Materials”, 2nd edtion, Prentice Hall, Englewood Cliffs (1993).

    57.J. London and D.W. Ashall, “ Some properties of soldered joints made with a tin/silver eutectic alloy”, Brazing and Soldering, pp. 17-20 (1986).

    58.L. Qua, D. Frear, D. Grivas, and J.W. Morris, Jr., “TENSILE BEHAVIOR OF Pb-Sn SOLDER/Cu JOINTS”, Journal of Electronic Materials, Vol. 16, pp. 203-208 (1987).

    59.H. T. Lee and M. H. Chen, “Influence of intermetallic compounds on the adhesive strength of solder joints”, Materials Science and Engineering, Vol. 333, pp. 24-34 (2002).

    60.陳明宏, 饒慧美, 廖天龍, “界面反應間化合物對錫銲接點破壞行為”, 中華民國第七屆破壞科學研討會論文集, B4-05-1 (2000).

    61.Ann A. Liu, H. K. Kim and K. N. Tu, “Spalling of Cu6SN5 spheroids in the soldering reaction of eutectic Sn-Pb on Cr/Cu/Au thin films”, Journal of Applied Physics, Vol. 80 (1996).

    62.H. K. Kim and K. N. Tu, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers”, Applied Physics Letters, Vol. 68 (1996).

    63.Ursula R. Kattner, “Phase Diagrams for Lead-Free Solder Alloys”, Abi/Inform Trade and Industry, JOM, Vol. 54, pp.45 (2002).

    64.Ursula R. Kattner, NIST, unpublished research(2002); see also the web page www.metallurgy.nist.gov/phase/solder/solder.html.

    65.李守維, “錫/(銅-鎳)銲點界面反應與錫-銅/鎳銲點機械性質”,國立清華大學化學工程系92年.

    66.N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, pp. 278-287 (1990).

    67.I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, Vol. 1, pp. 94-97 (1991).

    68.W. C. Giessen, Bulletin of Alloy Phase Diagrams, Vol. 1, pp. 41-45 (1980).

    69.T. B. Massalski et al. (eds.): Binary Alloy Phase Diagrams, Materials Park, OH, ASM International (1986).

    70.G. V. Raynor, “Annotated Equilibrium Diagrams”, The Institute of Materials (1947).

    71.E. Schurmann and A. Kaune, “Z. Metallkd”, Vol. 56, pp. 453-461 (1965).

    72.B. Predel and W. Schwermann, “Z. Metallkd”, Vol. 58, pp. 553-557 (1967).

    QR CODE