簡易檢索 / 詳目顯示

研究生: 林世偉
Shih-wei Lin
論文名稱: 錫-鐵-鎳三元系統之相平衡與錫/鐵-鎳合金之界面反應研究
Phase Equilibria of the ternary Sn-Fe-Ni system and the interfacial reactions at the Sn/Fe-Ni couples
指導教授: 李嘉平
Chia-pyng Lee
顏怡文
Yee-wen Yen
口試委員: 陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 鐵-鎳合金相平衡界面反應介金屬相反應路徑
外文關鍵詞: Iron-Nickel alloy
相關次數: 點閱:274下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用電弧熔融配製鐵-鎳-錫合金,探討其三元系統的相平衡,並使用液/固反應偶之技術,觀察錫/鐵-鎳合金之界面反應。實驗結果顯示,鐵-鎳-錫三元系統在270℃的等溫截面圖中,存在8個三相區、17個兩相區、以及10個單相區,並且無三元的介金屬相生成。而界面反應部分,其實驗結果顯示出Sn/Alloy 42反應後會生成兩層不同形態的FeSn2¬介金屬層︰靠近基材端為細針狀連續層,而靠近銲料端為針狀、塊狀層。而當基材Ni含量小於80 at.%時,Sn/Fe-Ni僅會在界面生成FeSn2的介金屬層。而當Ni含量介於80 at.% ~ 90 at.%時,界面則會生成FeSn2及Ni3Sn4兩種不同的相, IMC成長迅速。當基材Ni含量提升至95 at.%以上時,介金屬層僅生成Ni3Sn4相,並不隨著反應時間的增長而改變。
    對界面反應所生成的厚度與反應時間的關係作圖,可得知在反應10小時以前,Sn/Alloy 42與Sn/Fe-60 at.% Ni之反應偶之n值約為0.5,其遵守拋物線定率,故反應機制為擴散控制;而Sn/Fe-80 at.% Ni、Sn/Fe-85 at.% Ni、Sn/Fe-90 at.% Ni、Sn/Fe-95 at.% Ni之反應偶之n值約為1,為厚度成長迅速的界面反應控制。將反應拉長至100小時後,Sn/Alloy 42之n值下降至0.18並且呈兩段式線性成長,而Sn/Fe-60 at.% Ni之n值仍為0.5,厚度成長為所有組成中最緩慢,而其他剩餘組成之反應偶則是保持n值約為1的擴散控制成長,至100小時反應後仍不改變其成長機制。
    Sn/Alloy 42、Sn/Fe-80 at.% Ni、以及Sn/Fe-95 at.% Ni之反應偶於270℃下長時效反應,利用線性掃描,配合界面組成與擴散距離之關係圖,繪製其反應路徑繪製於270℃鐵-鎳-錫等溫三相圖中,其銲料至基材之反應路徑依反應偶分別為: Sn/FeSn2/Alloy 42、Sn/Sn+FeSn2/Ni3Sn4/ Fe-80 at.% Ni與Sn/Ni3Sn4/Fe-95 at.% Ni。


    In this research, we used arc melting to mix up Fe-Ni-Sn alloys and discussed phase equillibria of the ternary phase; and further, we used liquid/solid reaction couples to investigate the interfacial reaction between tin and iron-nickel alloys. The experiment indicated that isothermal section of the Fe-Ni-Sn ternary system at 270℃ had eight three-phase regions, seventeen two-phase regions, ten one-phase regions and without any ternary coupound. In interfacial reactions section, Sn/Alloy 42 couple would form into two different IMC structures of FeSn2: the layer closed to the substrate was continuous niddles and that is near Sn solder side contained niddle and pillar shaped structure. When Fe-Ni substrate contained less then 80 at.%, Sn/Fe-Ni only formed FeSn2 phase in the interface. When Ni composition is between 80 at.% and 90 at.%, the FeSn2 and Ni3Sn4 phases were formed in the interface and the overall IMC thickness is enormous. When Ni contents of Fe-Ni substrate increased up to 95 at.%, the IMC turned to be the Ni3Sn4 phase only even after a long reaction time.
    By ploting IMC thickness to reaction time diagrams, we know that before reaction time for 10 hrs, the n value of Sn/Alloy 42 and Sn/Fe-60 at.%Ni couples were about 0.5 and obeyed parabolic law, which is diffusion-controlled. The n value of the Sn/Fe-80 at.%Ni, Sn/Fe-85 at.%Ni, Sn/Fe-90 at.%Ni, and Sn/Fe-95 at.%Ni couples were 1, which is reaction-controlled. When reaction time increased to 100 hrs, the n value of Sn/Alloy 42 decreased to 0.18 and presented two-step linear growth. Sn/Fe-60 at.%Ni had the same n value and the formation of the IMC was the slowest. Others n values remained 1 and did not change the kinetics of growth.
    By using line-scan of Sn/Alloy 42, Sn/Fe-80 at.%Ni, and Sn/Fe-95 at.%Ni long-time reaction couples in 270℃,we can plot the diffusion distance to the composition diagrams and use these data to depict reaction path to Fe-Ni-Sn ternary phase diagram in 270℃. The reaction path from solder to substrate were: Sn/FeSn2/Alloy 42, Sn/Sn+FeSn2/Ni3Sn4/ Fe-80 at.%Ni, and Sn/Ni3Sn4/Fe-95 at.%Ni, respectively.

    中文摘要………………………………………………………………….I 英文摘要………………………………………………………………..III 誌謝………………………………………………………………...........V 目錄…………………………………………………………………….VII 圖目錄…………………………………………………………………..IX 表目錄………………………………………………………………...XIII 第一章 前言. ……………………………………………………………1 第二章 文獻回顧……………………………….……………………….3 2-1電子構裝…..…………...………………………………………….3 2-2引腳架簡介..…………………...………………………………….5 2-3相平衡……….…………………………………………………….6 2-3.1三相平衡圖……..…………………………………………….6 2-3.2 Ni-Sn二元系統相平衡圖……………………………….……8 2-3.3 Fe-Sn二元系統相平衡圖…………………….…...………….9 2-3.4 Fe-Ni二元系統相平衡圖………………………..………….10 2-3.5 Fe-Ni-Sn三元系統之相平衡……………………..…………11 2-4界面反應與擴散理論………………………………..…………..13 2-4.1界面反應…………………………………………………….13 2-4.2擴散理論…………………………………………………….15 2-4.3反應路徑與界面形態……………………………………….17 2-5 Sn/Fe-Ni之界面反應相關文獻………………………………….19 2-5.1 Sn/Alloy 42之界面反應…………………………………….19 2-5.2 Sn-Ag/Fe-Ni合金之界面反應……………………………...20 2-5.3 Sn-In/Fe-Ni合金之界面反應……………………………….22 2-5.4 Sn-Ag、Sn-Cu、Sn-Ag-Cu/ Fe-42Ni之界面反應…………23 2-5.5 Sn-9Zn/ Fe-42Ni之界面反應……………………………….24 第三章 實驗方法與步驟………………………………………………26 3-1相平衡之研究方法………………………………………………26 3-1.1 Fe-Ni-Sn合金製備………………………………………….26 3-1.2熱處理……………………………………………………….26 3-1.3樣品分析…………………………………………………….26 3-2界面反應之研究方法……………………………………………30 3-2.1純錫銲料與鐵-鎳合金基材反應偶製備……………………30 3-2.2金相處理…………………………………………………….31 3-2.3試片分析…………………………………………………….31 第四章 結果與討論 …………………………………………36 4-1鐵-鎳-錫三元系統之相平衡………………………………………36 4-2 Sn銲料與Alloy 42基材之界面反應……………………………60 4-3 Sn銲料與Fe-60 at.% Ni基材之界面反應………………………65 4-4 Sn銲料與Fe-80 at.% Ni基材之界面反應………………………68 4-5 Sn銲料與Fe-85 at.% Ni基材之界面反應………………………73 4-6 Sn銲料與Fe-90 at.% Ni基材之界面反應………………………77 4-7 Sn銲料與Fe-95 at.% Ni基材之界面反應………………………81 4-8 Sn銲料與Fe-Ni基材反應偶之界面反應動力學…………………87 4-9介金屬化合物生成之反應路徑……………………………………90 第五章 結論……………………………………………………………98 第六章 參考文獻………………………………………………………100

    1. “WEEE Regulations”EU-Directive 96/EC (2002).
    2. “RoHS Regulations”EU-Directive 95/EC (2002).
    3. 安本: “第3篇, 第1章, I項, 携帶電話の应用例 (1)” サイエンスフオ一ラム, CSP/MCM 実裝テクノロジ一, pp. 323-331 (1999).
    4. P. Nash and A. Nash, in ”ASM Handbook Vol. 3 Alloy Phase Diagrams”, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
    5. H. Okamoto, in ”ASM Handbook Vol. 3 Alloy Phase Diagrams”, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
    6. G. Cacciamani, A. Dinsdale, M. Palumbo, and A. Pasturel, “The Fe-Ni system: Thermodynamic modelling assisted by atomistic calculations”, Intermatallics, vol. 18, pp.1148-1162 (2010).
    7. P. Schafmeister, R. Ergang, “Das Zustandsschaubild Eisen-Nickel-Zinn.” Archiv Fuer Das Eisenhuettenwesen, vol. 13, pp.95~103 (1939).
    8. S. W. Chen, S. H. Wu, and S. W. Lee, “Interfacial Reactions in the Sn-(Cu)/Ni, Sn-(Ni)/Cu, and Sn/(Cu,Ni) Systems”, Journal of Electronic Materials, vol.32, pp. 1188-1194 (2003).
    9. N. Saunders and A. P. Miodownik, in ”ASM Handbook vol. 3 Alloy Phase Diagrams”, edited by H. Baker, ASM International, Materials Park, Ohio (1990).
    10. F. J. J. van Loo, J.A. van Beek, G. F. Bastin, and R. Metselaar, in ”Diffusion in Solids: Recent Developments”, ed. By M. A. ayananda and G. E. Murch, The Metallurgical Society, Inc., Warrendale, Pennsylvania (1985).
    11. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, Vol. 2, pp. 89-117 (1963).
    12. J. B. Clark, “Conventions for Plotting the Diffusion Paths in Multiphase Ternary Diffusion Couples on the Isothermal Section of a Ternary Phase Diagram”, Transactions of the Metallurgical Society of Aime, vol. 227, pp. 1250-1251 (1963).
    13. C. W. Hwang, K. Sugamuna, J.-G. Lee, and H. Mori, “Interface microstructure between Fe-42Ni alloy and pure Sn”, Journal of Materials Research, vol. 18, pp. 1202-1210 (2003).
    14. C. W. Hwang, K. Sugamuna, “Effect of Cu addition to Sn-Ag lead-free solder on interfacial stability with Fe-42Ni”, Materials Transactions, vol. 15, pp. 714-720 (2004).
    15. S. K. Kang, J. Horkans, P. C. Andricacos, R. A. Carruthers, J. Cotte, M. Datta, P. Gruber, J. M. E. Harper, K. Kweitniak, C. Sambucetti, L. Shi, G. Brouillette, and D. Danovitch, “Pb-free solder alloys for flip chip applications”, Proceedings-Electronic Components and Technology Conference, San Diego, CA, USA, p. 283 (1999).
    16. H. Ozaki, T. Yamamoto, T. Sano, A. Hirose, K.F. Kobayashi, M. Ishio, K. Shiomi, and A. Hashimoto, “Lead-Free Soldering: It is Here to Stay-Applications, Alloy Development, and Impact”, ed. M.A. Palmer, I.E. Anderson, and E.J. Cotts, Materials Science Technical Series (MS&T), Cincinnati, OH, USA, p. 147 (2006).
    17. J. P. Daghfal, P. J. Shang, Z. Q. Liu, J. K. Shang, “Interfacial Reactions Between In-Sn Solder and Ni-Fe Platings”, Journal of Electronic Materials, vol. 38, pp. 2506-2515 (2009).
    18. N. Dariavach, P. Callahan, J. Liang, and R. Fournelle, “Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates”, Journal of Electronic Materials, vol. 35, pp. 1581-1592 (2006).
    19. C. W. Hwang, K. S. Kim, K. Sugamuna, “Interfaces in lead-free soldering”, Journal of Electronic Materials, vol. 32, pp. 1249-1256 (2003).
    20. Zhang, X. F., J.D. Guo, and J. K. Shang, ”Growth kinetics of intermetallic compounds between Sn-9Zn solder and electroplated Fe-42Ni metallization”, Journal of Alloys and Compounds, vol. 487, pp. 776-780 (2009).
    21. 方揚凱,”無鉛銲料與Au/Pd/Ni/Cu、Au/Pd/Ni/Brass 基材之界面反應”,碩士論文 (2008).
    22. S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, “Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element” Journal of Applied Physics, vol. 101 (2007).
    23. Y.W. Yen, J.W. Su, D.P. Huang, “Phase equilibria of the Fe-Cr-Ni ternary systems and interfacial reactions in Fe-Cr alloys with Ni substrate”, Journal of alloy and compound, vol. 457, pp. 270-278 (2008).
    24. 謝玉萍,Sn、Sn- 3.0Ag-0.5Cu、Sn-9.0Zn 無鉛銲料與Alloy 42基材界面反應,國立台灣科技大學 工程技術研究所,碩士論文 (2010).

    QR CODE