簡易檢索 / 詳目顯示

研究生: 邱泓瑜
Hung-Yu Chiu
論文名稱: 臨界區附近混合物之汽液相平衡性質研究
Vapor-Liquid Phase Equilibrium Properties of Mixtures Containing Supercritical Carbon Dioxide
指導教授: 林河木
Ho-mu Lin
李明哲
Ming-jer Lee
口試委員: 談駿嵩
none
汪上曉
none
李夢輝
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 214
中文關鍵詞: 氣液相平衡超臨界流體
外文關鍵詞: Vapor-Liquid Phase Equilibrium, supercritical fluid
相關次數: 點閱:345下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究量取二氧化碳(carbon dioxide) + 苯乙烯(styrene)、+ 聚乙二醇、+ 乙二醇單甲基醚酯、+ 乙醇(ethanol)、+ 丙酮(acetone),與+ 喹林(quinoline)溶劑所組成之雙分系統的汽液相邊界數據,平衡溫度介於291.15 K ~ 358.15 K,操作壓力則高至約42.03 MPa或臨界壓力附近。實驗所量取的混合物相平衡數據使用Soave-Redlich-Kwong、Peng-Robinson與Patel-Teja狀態方程式,配合含單交互作用參數之凡得瓦爾單一流體混合律 (MR-Q1) 與雙交互作用參數之凡得瓦爾單一流體混合律(MR-Q2),進行汽液相平衡的計算。將所量取的相邊界數據平滑化後,可求得在給定溫度與壓力下,共存之汽液兩相的組成,進而求得K值。在臨界區附近各成分之K值隨壓力的變化情形之相圖,有助於吾人了解臨界區附近的相行為,由於臨界點附近之熱物性資料極為缺乏,這些結果對於從事臨界區附近之熱力模式改進的研究者而言,很有參考的價值。
    本研究進一步量取由二氧化碳(carbon dioxide)抗溶劑與二甲基亞砜(DMSO)/乙醇(EtOH) = 7/3、二甲基亞砜(DMSO)/乙醇(EtOH) = 5/5、二甲基亞砜(DMSO)/乙醇(EtOH) = 3/7、氯仿(chloroform)/甲醇(MeOH) = 1/2 、1-辛醇(1-octanol)/聚乙二醇(PEG-200) = 9/1、乙醇(EtOH)/水(H2O) = 9/1、二甲基亞砜(DMSO)/水(H2O) = 9/1與二甲基甲醯胺(DMF)/水(H2O) = 7.5/2.5不同莫耳分率比之混合溶劑所組成之三成份系統的恆溫汽液相邊界數據,平衡溫度介於298.15 K ~ 348.15 K,操作壓力則高至約22.87 MPa或臨界壓力附近。三成分系統使用Peng-Robinson狀態方程式配以雙交互作用參數之凡得瓦爾單一流體混合律進行汽液相邊界的估算,各交互作用參數分別先由雙成分系統之汽液平衡數據訂定。


    A visual and volume-variable high-pressure phase equilibrium analyzer (PEA) was used for determining the phase boundaries over a wide pressure range, including near critical region, by a synthetic method.
    The isothermal vapor-liquid phase boundaries were measured, in the present study, for CO2 (1) + styrene, CO2 (1) + polyethylene glycol-200 (2), CO2 (1) + propylene glycol methyl ether acetate (2), CO2 (1) + ethanol (2), CO2 (1) + acetone, and CO2 (1) + quinoline (2) at temperatures from (291.15 to 358.15) K and pressures up to 42.03 MPa. The new VLE data were correlated with the Soave, the Peng-Robinson (PR) and the Patel-Teja (PT) equations of state (EOS) incorporating with the one-parameter and the two-parameter van der Waals one-fluid mixing rules, respectively. On the basis of the experimental results, the isothermal K-values varying with pressure were presented graphically around the critical points. In this region, the available information is rather limited. The phase equilibrium data also provide a valuable basis for the development of new equations of state, especially for improving representation of the phase behavior near critical region.
    This apparatus was further used to measure the isothermal vapor-liquid phase boundaries for CO2 + [dimethyl sulfoxide/ethanol = 7/3], CO2 + [dimethyl sulfoxide/ethanol = 5/5], CO2 + [dimethyl sulfoxide/ethanol = 3/7], CO2 + [chloroform/methanol = 1/2], CO2 + [1-octanol/polyethylene glycol-200 = 9/1], CO2 + [ethanol /H2O = 9/1], CO2 + [dimethyl sulfoxide/H2O = 9/1], and CO2 + [N,N-Dimethylformamide/H2O = 7.5/2.5] ternary systems in a temperature range from (298.15 to 348.15) K and pressures up to 22.87 MPa or critical pressures over a wide composition range. The PR EOS with the two-parameter van der Waals one-fluid mixing rules was adopted in this study to predict the phase boundaries of the ternary systems. The experimental values were compared with the predicted results from the PR EOS with the binary interaction parameters determined from the VLE data of the constituent binaries. It was found that the agreement was reasonably well. Critical point at each temperature was determined by interpolation of the experimental phase boundary. The results of this study are of importance to explore suitable operating conditions for manipulating particle formation with supercritical anti-solvent process.

    Table of Contents Page English Abstract Ⅰ Chinese Abstract Ⅲ Acknowledgement Ⅴ Table of Contents Ⅶ List of Figures Ⅹ List of Tables ⅩⅦ Nomenclatures ⅩⅩⅠ Chapter 1 Introduction 1 1.1 Supercritical fluids 3 1.2 Supercritical fluids technology 4 1.3 Supercritical fluid-assisted micronization processes 10 1.3.1 Rapid expansion of supercritical solutions, RESS 10 1.3.2 Particles from gas-saturated solutions/suspensions, PGSS 12 1.3.3 Gas anti-solvent recrystallization, GAS 13 1.3.4 Supercritical anti-solvent precipitation, SAS 13 1.3.5 Supercritical assisted atomization, SAA 14 1.3.6 Carbon dioxide assisted nebulization with a bubble dryer 14 1.4 The measurement of vapor-liquid phase equilibrium 15 1.4.1 Analytic method 15 1.4.1-1 Isothermal analytic method 16 1.4.1-2 Isobaric–isothermal analytic method 17 1.4.1-3 Isobaric analytic method 17 1.4.1-4 Continuous-flow method 17 1.4.1-5 Semi-flow method 18 1.4.2 Synthetic method 19 1.4.2-1 Visual synthetic method 20 1.4.2-1 Non-visual synthetic method 20 1.4.3 Other methods 20 1.5 Focus of this study 21 Chapter 2 Experimental section 29 2.1 Materials 29 2.2 Apparatus-Visual and volume-variable high-pressure phase equilibrium analyzer 30 2.2.1 Loading section 31 2.2.2 Equilibrium section 31 2.2.3 Visual observation section 32 2.2.4 Degassing and unloading section 32 2.3 Procedure 37 2.4 Phase transition 38 2.4.1 Phase transition in the bubble point region 38 2.4.2 Phase transition near critical region 38 2.4.3 Phase transition around dew point region 39 Chapter 3 Experimental results 46 3.1 Vapor-liquid equilibrium of binary systems 46 3.2 Estimation of K-values 75 3.3 Vapor-liquid equilibrium of ternary system 93 Chapter 4 Correlation of vapor-liquid equilibrium data 122 4.1 Correlation of vapor-liquid equilibrium data for binary systems 123 4.2 Prediction of vapor-liquid equilibrium properties for ternary systems 176 Chapter 5 Conclusions 195 Appendix 197 References 200

    References

    Abedi, S. J., H. Y. Cai, S. Seyfaie, and J. M. Shaw, ‘‘Simultaneous Phase Behaviour, Elemental Composition and Density Measurement Using X-ray Imaging,’’ Fluid Phase Equilib., 158–160, 775–781 (1999).

    Adrian, T. and G. Maurer, ‘‘Solubility of Carbon Dioxide in Acetone and Propionic Acid at Temperatures between 298 K and 333 K,’’ J. Chem. Eng. Data, 42, 668-672 (1997).

    Afrianto, ‘‘Vapor-Liquid Phase Behavior of Binary Mixtures Containing Carbon Dioxide Near Critical Region,’’ MS Thesis, Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei (2006).

    Bahrami, M. and S. Ranjbarian, “Production of Micro- and Nano-Composite Particles by Supercritical Carbon Dioxide,” J. Supercrit. Fluids, 40, 263-283 (2007).

    Bamberger, A. and G. Maurer, ‘‘High-Pressure (Vapour + Liquid) Equilibria in (Carbon Dioxide + Acetone or 2-Propanol) at Temperatures from 293 K to 333 K,’’ J. Chem. Thermodyn., 32, 685-700 (2000).

    Beard, A. M., J. C. Mullins, C. H. Barron, and G. A. Daniels, ’’Fluid Vapor-Liquid Phase Equilibrium at High Pressures for the Ethane-Trinormalbutylaluminum and Ethane-Trinormalhexylaluminum Systems,’’ Fluid Phase Equilib., 116, 429-436 (1996).

    Byun, H. S., J. G. Kim, and J. S. Yang, ‘‘Phase Behavior of the Poly[hexyl (meth)acrylate]-Supercritical Solvents-Monomer Mixtures at High Pressures,’’ Ind. Eng. Chem. Res., 43, 1543-1552 (2004).

    Chang, C. J., K. L. Chiu, and C. Y. Day, ‘‘A New Apparatus for the Determination of P-x-y Diagrams and Henry’s Constants in High Pressure Alcohols with Critical Cabon Dioxide,’’ J. Supercrit. Fluids, 12, 223-237 (1998).

    Chang, C. J., C. Y. Day, C. M. Ko, and K. L. Chiu, ‘‘Densities and P-x-y Diagrams for Carbon Dioxide Dissolution in Methanol, Ethanol, and Acetone Mixtures,’’ Fluid Phase Equilibria, 131, 243-258 (1997).

    Chang, S. C., M. J. Lee, and H. M. Lin, ‘‘The Influence of Phase Behavior on the Morphology of Protein α-Chymotrypsin Prepared via a Supercritical Anti-Solvent Process,’’ J. Supercrit. Fluids, 44, 219-229 (2008).

    Chen, C. C. and P. M. Mathias, ‘‘Applied Thermodynamics for Process Modeling,’’ AIChE J., 48, 194-200 (2002).

    Chen, C. C., S. Watanasiri, P. M. Mathias and V. V. de Leeuw, ‘‘Industry Perspective on the Economic Value of Applied Thermodynamics and the Unmet Needs of Aspen Tech Clients,’’ in: T. Letcher (Ed.), Chemical Thermodynamics in Industry, Royal Society of Chemistry, October 1 (2004).

    Cheng, K. W., M. Tang, and Y. P. Chen, ’’Solubilities of Benzoin, Propyl 4-Hydroxybenzoate and Mandelic Acid in Supercritical Carbon Dioxide,’’ Fluid Phase Equilib., 201, 79-96 (2002).

    Chester, T. L. and B. S. Haynes, ‘‘ Estimation of Pressure-Temperature Critical Loci of CO2 Binary Mixtures with Methyl-tert-Butyl ester, Ethyl Acetate, Methyl-Ethyl Ketone, Dioxane and Decane,’’ J. Supercrit. Fluids, 11, 15-20 (1997).

    Chiu, H. Y., R. F. Jung, M. J. Lee, and H. M. Lin, ‘‘Vapor-Liquid Phase Equilibrium Behavior of Mixtures Containing Supercritical Carbon Dioxide near Critical Region,’’ J. Supercrit. Fluids, 44, 273-278 (2008).

    Chrisochoou, A. A., K. Schaber, and K. Stephan, ‘‘Phase Equilibria with Supercritical Carbon Dioxide for the Enzymatic Production of an Enantiopure Pyrethroid Component. Part 1. Binary Systems,’’ J. Chem. Eng. Data, 42, 551–557 (1997).

    Daneshvar, M., K. Seechol, and E. Gulari, ‘‘High-Pressure Phase Equilibria of Poly(ethylene glycol )–Carbon Dioxide Systems,’’ J. Phys. Chem., 94, 2124-2128 (1990).

    Day, C. Y., C. J. Chang, and C. Y. Chen, ‘‘Phase Equilibrium of Ethanol + CO2 and Acetone + CO2 at Elevated Pressures,’’ J. Chem. Eng. Data, 41, 839-843 (1996).

    Dortmund Data Bank, Software and Separation Technology GmbH, Oldenburg, Germany.

    Duran-Valencia, C., A. Valtz, L. A. Galicia-Luna, and D. Richon, ‘‘Isothermal Vapor-Liquid Equilibria of the Carbon Dioxide (CO2)-N,N-Dimethylformamide (DMF) System at Temperatures from 293.95 K to 338.05 K and Pressures up to 12 MPa,’’ J. Chem. Eng. Data, 46, 1589-1592 (2001).

    Durling, N. E., O. J. Catchpole, S. J. Tallon, and J. B. Grey, ‘‘Measurement and Modelling of the Ternary Phase Equilibria for High Pressure Carbon Dioxide–Ethanol–Water mixtures,’’ Fluid Phase Equilib., 252, 103-113 (2007).

    Eckert, C. A., M. P. Ekart, B. L. Knutson, K. P. Payne, D. L. Tomasko, C. L. Liotta, and N. R. Foster, ‘‘Supercritical Fluid Fractionation of a Nonionic Surfactant,’’ Ind. Eng. Chem. Res., 31, 1105-1110 (1992).

    Ewing, M. B. and J. C. Sanchez Ochoa, ‘‘An Ebulliometer for Measurements of Vapour Pressure at Low Temperatures: the Vapour Pressures and the Critical State of Perfluoromethyl Cyclopentane,’’ J. Chem. Thermodyn., 30, 189–198 (1998).

    Fogh, F. and P. Rasmussen, ‘‘Detection of High-Pressure Dew and Bubble Points Using a Microwave Technique,’’ Ind. Eng. Chem. Res., 28, 371-375 (1989).

    Galicia-Luna, L. A. and A. Ortega-Rodriguez, ‘‘New Apparatus for the Fast Determination of High-Pressure Vapor-Liquid Equilibria of Mixtures and of Accurate Critical Pressures,’’ J. Chem. Eng. Data, 45, 265-271 (2000).

    Gallagher, P. M., M. P. Coffey, V. J. Krukonis, and N. Klasutis, “Gas Anti-Solvent Recrystallization: New Process to Recrystallize Compounds Insoluble in Supercritical Fluids,” ACS Symp. Series 406 (Supercritical Fluids Science and Technology), 334-354 (1989).

    Ggral, M., P. Oracz, and S. Warycha, ‘‘Vapour-Liquid Equlibria. V. the Ternary System Carbon Tetrachloride-Methanol-Chloroform at 303.15 K,’’ Fluid Phase Equilib., 55, 337-354 (1990).

    Giles, N. F., L. C. Wilson, G. M. Wilson, and W. V. Wilding, ‘‘Phase Equilibria on Eight Binary Mixtures,’’J. Chem. Eng. Data, 42, 1067-1074 (1997).

    Ginty, P. J., M. J. Whitaker, K. M. Shakesheff, and S. M. Howdle, “Drug Delivery Goes Supercritical,” Nanotoday, 42-48 (2005).

    Graser, F. and G. Wickenhaeuser, Patent US 4,451,654 (1982).

    Gregg, C. J., F. P. Stein, C. K. Morgan, and M. Radosz, ‘‘A Variable-Volume Optical Pressure-Volume-Temperature Cell for High-Pressure Cloud Points, Densities, and Infrared Spectra, Applicable to Supercritical Fluid Solutions of Polymers up to 2 kbar,’’ J. Chem. Eng. Data, 39, 219–224 (1994).

    Gross, J. and G.. Sadowski, ‘‘Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules,’’ Ind. Eng. Chem. Res., 40, 1244-1260 (2001).

    Hannay, J. B. and J. Hogarth, “On the Solubility of Solids in Gases,” Prco. Roy. Sec., London, 29, 324 (1879).

    Hou, M., S. Liang, Z. Zhang, J. Song, T. Jiang, and B. Han, ‘‘Determination and Modeling of Solubility of CO2 in PEG200 + 1-Pentanol and PEG200 + 1-Octanol Mixtures,’’ Fluid Phase Equilibria, 258, 108-114 (2007).

    Jacobs, M. A., “Measurement and Modeling of Thermodynamic Properties for the Processing of Polymers in Supercritical Fluids,” PhD thesis, Eindhoven University of Technology, Eindhoven (2005).

    Jung, J. and M. Perrut, “Particle Design Using Supercritical Fluids: Literature and Patent Survey,” J. Supercrit. Fluids, 20, 179-219 (2001).

    Kaczmarek B. and A. Radecki, ‘‘Vapor-Liquid Equilibria in Binary Systems Containing Ethanol with Hexamethyldisiloxane and Dimethyl Sulfoxide,’’ J. Chem. Eng. Data, 34, 195-197 (1989).

    Kato, M., K. Aizawa, T. Kanahira, and T. A. Ozawa, ‘‘New Experimental Method of Vapor-Liquid Equilibria at High Pressures,’’ J. Chem. Eng. Japan, 24, 767–771 (1991).

    Ke, J., K. E. Reid, and M. Poliakoff, ‘‘The Application of a Shear Mode Piezoelectric Sensor to Monitoring the High-Pressure Phase Behaviour of Asymmetric Binary Systems,’’ J. Supercrit. Fluids, 40, 27–39 (2007).

    Kerler, B. and A. Martin, “Partial Oxidation of Alkanes to Oxygenates in Supercritical Carbon Dioxide,” Catalysis Today, 61, 9-17 (2000).

    Kompella, U. B. and K. Koushik, “Preparation of Drug Delivery Systems Using Supercritical Fluid Technology,” Crit. Rev. Therap. Drug Carrier Systems, 18, 173-199 (2001).

    Kordikowski, A., A. P. Schenk, R. M. Van Nielen, and C. J. Peters, ‘‘Volume Expansions and Vapor-Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents,’’ J. Supercrit. Fluids, 8, 205-216 (1995).

    Kusdiana, D. and S. Saka, ‘‘Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methanol,’’ Fuel, 80, 693-698 (2001).

    Lopes, J. A., D. Gourgouillon, P. J. Pereira, A. M. Ramos, and M. Nunes da Ponte, ‘‘On the Effect of Polymer Fractionation on Phase Equilibrium in CO2+Poly(ethylene glycol )s Systems,’’ J. Supercrit. Fluids, 16, 261-267 (2000).

    Madras, G., C. Kolluru, and R. Kumar, ‘‘Synthesis of Biodiesel in Supercritical Fluids,’’ Fuel , 83, 2029–2033 (2004).

    Marteau, Ph., P. Tobaly, V. Ruffier-Meray, and A. Barreau, ‘‘In Situ Determination of High Pressure Phase Diagrams of Methane-Heavy Hydrocarbon Mixtures Using an Infrared Absorption Method,’’ Fluid Phase Equilib., 119, 213–230 (1996).

    May, E. F., T. J. Edward, A. G. Mann, C. Edwards, and R. C. Miller, ‘‘Development of an Automated Phase Behaviour Measurement System for Lean Hydrocarbon Fluid Mixtures, Using Re-entrant RF/Microwave Resonant Cavities,’’ Fluid Phase Equilib., 185, 339-347 (2001).

    McHugh, M. A. and V. J. Krukonis, “Supercritical Fluid Extraction,” Butterworths Publishers, Stoneham, MA, USA (1986).

    McHugh, M. A. and V. J. Krukonis, ‘‘Supercritical Fluid Extraction: Principles and Practice,’’ 2nd ed., Butterworth Heinemann, Stoneham, MA, USA (1994).

    Nishi, K., Y. Morikawa, R. Misumi, and M. Kaminoyama, ‘‘Radical Polymerization in Supercritical Carbon Dioxide—Use of Supercritical Carbon Dioxide as a Mixing Assistant,’’ Chem. Eng. Sci., 60, 2419-2426 (2005).

    Pasquali, I., R. Bettini, and F. Giordano, “Solid-State Chemistry and Particle Engineering with Supercritical Fluids in Pharmaceutics,” Eur. J. Pharm. Sci., 27, 299-310 (2006).

    Patel, N .C. and A. S. Teja, ‘‘A New Cubic Equation of State for Fluids and Fluid Mixtures,’’ Chem. Eng. Sci. , 37, 463-473 (1982).

    Peng, D. Y. and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 15, 59-64 (1976).

    Pfohl, O., S. Petkov, and G. Brunner, PE 2000- A Powerful Tool to Correlate Phase Equilibria, Herbet Utz Verlag, Wissenschaft, Munchen, Germany (2000).

    Prausnitz, J. M. and F. W. Tavares, ‘‘Thermodynamics of Fluid-Phase Equilibria for Standard Chemical Engineering Operations,’’ AIChE J., 50, 739-761 (2004).

    Quan, C., L. Shufen, T. Songjiang, X. Hong, L. Anqing, and G. Long, “Supercritical Fluid Extraction and Clean-up of Organochlorine Pesticides in Ginseng,” J. Supercrit. Fluids, 31, 149-157 (2003).

    Reid, R. C., J. M. Prausnitz, and B. E. Poling, ‘‘The Properties of Gases and Liquids,’’ 4th ed., McGraw-Hill, New York (1987).

    Reverchon, E., “Supercritical Anti-Solvent Precipitation of Micro- and Nano-Particles,” J. Supercrit. Fluids, 15, 1-21 (1999).

    Reverchon, E., “Supercritical-Assisted Atomization to Produce Micro- and/or Nanoparticles of Controlled Size and Distribution,” Ind. Eng. Chem. Res., 41, 2405-2411 (2002).

    Reverchon, E. and R. Adami, “Nanomaterials and Supercritical Fluids,” J. Supercrit. Fluids, 37, 1-22 (2006).

    Reverchon, E., G. Caputo, and I. De Marco, “Role of Phase Behavior and Atomization in the Supercritical Antisolvent Precipitation,” Ind. Eng. Chem. Res., 42, 6406-6414 (2003).

    Reverchon, E. and A. Spada, “Crystalline Microparticles of Controlled Size Produced by Supercritical-Assisted Atomization,” Ind. Eng. Chem. Res., 43, 1460-1465 (2004).

    Roger, W. J., J. C. Holstw, P. T. Eubank, and K. R. Hall, ‘‘Microwave Apparatus for Phase Transition Studies of Corrosive Fluids to 1.7 kbar and 588 K,’’ Rev. Sci. Instrum., 56, 1907-1912 (1985).

    Scheneider, G. M., “Physicochemical Principles of Extraction with Supercritical Gases,” Angew. Chem. Ed. Engl., 17, 716-727 (1978).

    Scurto, A. M., C. M. Lubbers, G. Xu, and J. F. Brennecke, ‘‘Experimental Measurement and Modeling of the Vapor-Liquid Equilibrium of Carbon Dioxide + Chloroform,’’ Fluid Phase Equilib., 190, 135-147 (2001).

    Shakhashiri, General Chemistry, www.scifun.org.

    Shishikura, A. and H. Takahashi, “Citric Acid Purification Process Using Compressed Carbon Dioxide,” J. Supercrit. Fluids, 5, 303-312 (1992).

    Sievers, R. E., E. T. S. Huang, and J. A. Villa, “Generation of Fine Drug Powders by a Bubble Dryer,” J. Aerosol Med., 14, 390 (2001a).

    Sievers, R. E., E. T. S. Huang, J. A. Villa, G. Engling, and P. R. Brauer, “Micronization of Water-Soluble or Alcohol-Soluble Pharmaceuticals and Model Compounds with a Low-Temperature Bubble Dryer®,” J. Supercrit. Fluids, 26, 9-16 (2003).

    Sievers, R. E., E. T. S. Huang, J. A. Villa, J. K. Kawamoto, M. M. Evans, and P. R. Brauer, “Low-Temperature Manufacturing of Fine Pharmaceutical Powders with Supercritical Fluid Aerosolization in a Bubble Dryer®,” Pure Appl. Chem., 73, 1299-1303 (2001b).

    Sievers, R. E., U. Karst, P. D. Milewski, S. P. Sellers, B. A. Miles, J. D. Schaefer, C. R. Stoldt, and C. Y. Xu, “Formation of Aqueous Small Droplet Aerosols Assisted by Supercritical Carbon Dioxide,” Aerosol Sci. Technol., 30, 3-15 (1999).

    Sievers, R. E., P. D. Milewski, S. P. Sellers, B. A. Miles, B. J. Korte, K. D. Kusek, G. S. Clark, B. Mioskowski, and J. A. Villa, “Supercritical and Near-Critical Carbon Dioxide Assisted Low-Temperature Bubble Drying,” Ind. Eng. Chem. Res., 39, 4831-4836 (2000).

    Sievers, R. E., B. P. Quinn, S. P. Cape, J. A. Searles, C. S. Braun, P. Bhagwat, L. G. Rebits, D. H. McAdams, J. L. Burger, J. A. Best, L. Lindsay, M. T. Hernandez, K. O. Kisich, T. Iacovangelo, D. Kristensen, and D. Chen, “Near-Critical Fluid Micronization of Stabilized Vaccines, Antibiotics and Anti-Virals,” J. Supercrit. Fluids, 42, 385-391 (2007).

    Soave, G., “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., 27, 1197-1203 (1972).

    Stievano, M. and N. Elvassore, ‘‘High-Pressure Density and Vapor-Liquid Equilibrium for the Binary Systems Carbon Dioxide-Ethanol, Carbon Dioxide-Acetone and Carbon Dioxide-Dichloromethane,’’ J. Supercrit. Fluids, 33, 7-14 (2005).

    Stepanov, G.. V., A. R. Rasulov, L. V. Malysheva, and K. A. Shakhbanov, ‘‘Temperature Dependence of Heat Capacity and Pressure for One Ternary Mixture of Water + n-Hexane + 1-Propanol,’’ Fluid Phase Equilib., 157, 309–316 (1999).

    Subramaniam, B., R. A. Rajewski, and K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide,” J. Pharm. Sci., 86, 885-890 (1997).

    Sun, Y. P., P. Atorngitjawat, and M. J. Meziani, “Preparation of Silver Nanoparticles via Rapid Expansion of Water in Carbon Dioxide Microemulsion into Reductant Solution,” Langmuir, 17, 5707-5710 (2001).

    Sun, Y. P., R. Guduru, F. Lin, and T. Whiteside, “Preparation of Nanoscale Semiconductors through the Rapid Expansion of Supercritical Solution (RESS) into Liquid Solution,” Ind. Eng. Chem. Res., 39, 4663-4669 (2000).

    Sun, Y. P., M. J. Meziani, P. Pathak, and L. Qu, “Polymeric Nanoparticles from Rapid Expansion of Supercritical Fluid Solution,” Chem. Eur. J., 11, 1366-1373 (2005).

    Sun, Y. P. and H. W. Rollins, “Preparation of Polymer-Protected Semiconductor Nanoparticles through the Rapid Expansion of Supercritical Fluid Solution,” Chem. Phys. Lett., 288, 585-588 (1998).

    Suppes, G. J. and M. A. McHugh, “Phase Behavior of the Carbon Dioxide-Styrene System,” J. Chem. Eng. Data, 34, 310-312 (1989).

    Takagi, T., T. Sakura, T. Tsuji, and M. Hongo, ‘‘Bubble Point Pressure for Binary Mixtures of Difluoromethane with Pentafluoroethane and 1,1,1,2-Tetrafluoroethane,’’ Fluid Phase Equilib., 162, 171-179 (1999).

    Tan, C. S., S. J. Yarn, and J. H. Hsu, “Vapor-Liquid Equilibria for the Systems Carbon Dioxide-Ethylbenzene and Carbon Dioxide-Styrene,” J. Chem. Eng. Data, 36, 23-25 (1991).

    Taraszewska, J., ‘‘Salt Effect on Vapour-Liquid Equilibrium in the Dimethylsulphoxide-Water-99 m NaClO, System at 298.15 K,’’ Fluid Phase Equilib., 3, 13-22 (1979).

    Tkatchenko, D. B., S. Chambrey., R. Keiski, R. Ligabue., L. Plasseraud., P. Richard, and H. Turunen, “Direct Synthesis of Dimethyl Carbonate with Supercritical Carbon Dioxide: Characterization of a Key Organotin Oxide Intermediate,” Catalysis Today, 115, 80-87 (2006).

    Tom, J. W. and P. G. Debenedetti, “Particle Formation with Supercritical Fluids — a Review,” J. Aerosol Sci., 22, 555-584 (1991).

    Tsivintzelis, I., D. Missopolinou, K. Kalogiannis, and C. Panayiotou, ‘‘Phase Compositions and Saturated Densities for the Binary Systems of Carbon Dioxide with Ethanol and Dichloromethane,’’ Fluid Phase Equilib., 224, 89-96 (2004).

    Varma, M. N. and G. Madras, ‘‘Synthesis of Biodiesel from Castor Oil and Linseed Oil in Supercritical Fluids,’’ Ind. Eng. Chem. Res., 46, 1-6 (2007).

    Vemavarapu, C., M. J. Mollan, M. Lodaya, and T. E. Needham, “Design and Process Aspects of Laboratory Scale SCF Particle Formation Systems,” Int. J. Pharm., 292, 1-16 (2005).

    Verneau, Ph., J. Lieto, A. Boudehen, and J. Bousquet, ‘‘A Novel Technique for Rapid Liquid-Vapor Equilibrium Measurement and Modeling,’’ Chem. Eng. Sci., 49, 1719–1727 (1994).

    Weber, W., S. Petkov, and G. Brunner, ‘‘Vapour–Liquid-Equilibria and Calculations Using the Redlich–Kwong-Aspen-Equation of State for Tristearin, Tripalmitin, and Triolein in CO2 and Propane,’’ Fluid Phase Equilib., 158, 695–706 (1999).

    Wendland, M., H. Hasse, and G.. Maurer, ‘‘Experimental Pressure-Temperature Data on Three- and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxide-Water,’’ J. Chem. Eng. Data, 44, 901-906 (1999).

    Weng, W. L. and M. J. Lee, ‘‘Vapor-Liquid Equilibrium of the Octane/Carbon Dioxide, Octane/Ethane, and Octane/Ethylene Systems,’’ J. Chem. Eng. Data , 37, 213-215 (1992).

    Winter, R., J. Erbes, R. H. Templer, J. M. Seddon, A. Syrykh, N. A.Warrender, and G. Rapp, ‘‘Inverse Bicontinuous Cubic Phases in Fatty Acid/Phosphatidylcholine Mixtures: The Effects of Pressure and Lipid Composition,’’ Phys. Chem. Chem. Phys. 1, 887-893 (1999).

    Wu, H. S., D. Hagewiesche, and S. I. Sandler, ‘‘Vapor-Liquid Equilibria of 2-Propanol + Water + N,N-Dimethylformamide,’’ Fluid Phase Equilib., 43,77-89 (1988).

    Wu, H. T., M. J. Lee, and H. M. Lin, ‘‘Nano-Particles Formation for Pigment Red 177 via a Continuous Supercritical Anti-Solvent Process,’’ J. Supercrit. Fluids., 33, 173-182 (2005).

    Wu, H. T., M. J. Lee, and H. M. Lin, ‘‘Precipitation Kinetics of Pigment Blue 15:6 Sub-Micro Particles with a Supercritical Anti-Solvent Process,’’ J. Supercrit. Fluids., 37, 220-228 (2006).

    Yeo, S. D. and E. Kiran, “Formation of Polymer Particles with Supercritical Fluids: A Review,” J. Supercrit. Fluids, 34, 287-308 (2005).

    Yonker, C. R., J. C. Linehan, and J. L. Fulton, ‘‘The Use of High Pressure NMR for the Determination of Phase Behavior for Select Binary Solvent Systems,’’ J. Supercrit. Fluids, 14, 9–16 (1998).

    Yoon, J. H., H. S. Lee, and Lee, H. ‘‘High-Pressure Vapor-Liquid Equilibria for Carbon Dioxide + Methanol, Carbon Dioxide + Ethanol, and Carbon Dioxide + Methanol + Ethanol,’’ J. Chem. Eng. Data, 38, 53-55 (1993).

    Zaboloy, M. S., H. P. Gros, S. B. Bottini, and E. A. Brignole, ‘‘Isothermal Vapor-Liquid Equilibrium Data for the Binaries Isobutane-Ethanol, Isobutane-1-Propanol, and Propane-Ethanol,’’ J. Chem. Eng. Data, 39, 214–218 (1994).

    Zhang, J., L. Gao, X. Zhang, B. Zong, T. Jiang, and B. Han, “Phase Behaviors, Density, and Isothermal Compressibility, of Styrene + CO2, Ethylbenzene + CO2, Ethylbenzene + Styrene + CO2 Systems,” J. Chem. Eng. Data, 50, 1818-1822 (2005).

    QR CODE