簡易檢索 / 詳目顯示

研究生: 黃堯暉
Yao-Hui Huang
論文名稱: 頻差疊紋法應用於晶圓表面形貌量測之開發
Development of Frequency Difference Moiré Method for Wafer Surface Profile Measurement
指導教授: 謝宏麟
Hung-lin Hsieh
口試委員: 鄭正元
Jeng-ywan Jeng
修芳仲
Fang-jung Shiou
吳乾埼
Chyan-chyi Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 120
中文關鍵詞: 疊紋表面形貌高轉速頻差觸發法
外文關鍵詞: Moiré, surface profile, high speed, frequency difference method
相關次數: 點閱:164下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一套新式的「頻差疊紋式表面形貌量測技術」,用以偵測置放於高迴轉速(1500rpm)平台上的藍寶石晶圓表面形貌。此套量測技術以疊紋理論為設計概念,結合雷射準直儀、掃描輪廓法及亞條紋分析法等技術之優點,同時引入閃頻原理的技術理念,使量測系統可應用於高迴轉速的量測條件中。
    此套「頻差疊紋式表面形貌量測技術」由一氦氖雷射(或雷射二極體)、一擴束系統、一線性光柵片、一分光鏡、一聚焦透鏡及一電荷耦合元件(Charge-coupled Device)攝影機所組成。藉由擴束系統將雷射光束直徑擴展至兩吋,擴束光穿透線性光柵片後投射於待測藍寶石晶圓基板上,接著反射回原光路架構中,再通過透鏡聚焦於CCD照相機中形成量測光柵影像,同時利用LabVIEW程式語言於電腦端形成參考(數位)光柵影像,最後藉參考及量測光柵影像後形成疊紋條紋影像。當晶圓基板發生翹曲(表面形貌改變)時,疊紋條紋將隨之發生變化,透過頻差觸發法的頻率調控來進一步分析疊紋影像的相位變化量,即可使量測系統量測到晶圓基板表面各偵測點之角度變化量,最後再藉由掃描輪廓法的使用來重建藍寶石基板的表面形貌。
    由實驗結果證明,於高迴轉速的條件下,此套「頻差疊紋式表面形貌量測技術」可精準地量測多片待測晶圓基板的表面形貌,其解析度(最小可量得的角度變化量)可達5µrad,量測速度極限為900µrad/s,5分鐘的系統穩定度達0.4µrad以內,量測表面形貌的重現性誤差小於1.08%。此外,本量測系統可實際架設於可視化腔體上進行晶圓基板之表面形貌量測。


    A novel technique for surface profile measurement by the frequency difference moiré method for measuring sapphire wafers on top of a high speed rotating platform (1500rpm) is proposed in this study. This measurement technique is based on the moiré method, combining the advantages of laser autocollimators, the scanning profile method, sub-fringe analysis method, as well as the the stroboscopic measurement technique, thereby allowing the system to be applied to samples rotating at high speeds.
    The configuration of this technique consists of a He-Ne laser or Laser Diode as light source, a beam expander, a linear grating, a focusing lens, and a Charge-coupled Device camera. The laser beam is first expanded to a diameter of two inches, then projected through the linear grating onto a sapphire wafer, reflected into the focusing lens, which is then captured by CCD camera and converted into moiré fringe in the computer. When wafer warpage happens, the moiré fringe will change accordingly; by analyzing the phase shift of the moiré with the frequency difference method, the system is able to measure the change in angle of all detection points on the surface, and reconstruct the surface profile of the sapphire wafer via the scanning profile method.
    The results of our experiments show that this measurement technique can accurately measure the surface profile of multiple sapphire wafers under high speed rotation; it has a resolution of 5 µrad, a speed limit of 900 µrad/s, a system stability of 0.4 µrad within five minutes, as well as being able the reconstruct the topography of the measured surface with an error less than 1.08 percent. This system can also be applied to a visualization chamber for wafer surface structure measurement.

    摘要 IV Abstract V 致謝 VI 符號說明 VII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 接觸式表面形貌量測技術之文獻回顧 3 1.2.2 非接觸式表面形貌量測技術之文獻回顧 3 1.2.3 動態量測技術之文獻回顧 10 1.3 研究目的 17 1.4 論文架構 18 第二章 基礎理論 20 2.1 疊紋效應(Moiré effect) 20 2.1.1 疊紋基本原理 21 2.1.2 疊紋橫移理論 25 2.1.3 疊紋縮放理論 26 2.1.4 疊紋旋轉理論 27 2.2 雷射準直儀原理 29 2.3 疊紋條紋相位分析 30 2.3.1 亞條紋積分法 30 2.3.2 相位解纏繞 32 2.4 掃描輪廓法量測原理 33 2.5 閃頻動態量測原理 35 2.6 小結 37 第三章 頻差疊紋式表面形貌量測技術 39 3.1 頻差疊紋式表面形貌量測技術系統架構 39 3.1.1 疊紋式表面形貌量測技術 39 3.1.2 頻差觸發法 42 3.2 驗證平台設計 44 3.3 影像光強度判別與觸發 46 3.4 相位分析與表面形貌量測程式 47 3.5 元件儀器介紹 48 3.6 小結 50 第四章 實驗結果與討論 51 4.1 晶圓基板傾斜角度量測實驗 51 4.2 晶圓基板表面形貌量測實驗 54 4.2.1 驗證平台 54 4.2.2 可視化腔體 61 4.3 量測系統性能測試與討論 66 4.3.1 解析度量測 67 4.3.2 穩定度量測 67 4.3.3 速度極限量測 69 4.3.4 表面形貌量測驗證 70 4.4 小結 73 第五章 誤差分析 74 5.1 系統誤差(Systematic Error) 74 5.1.1 光柵週期縮放誤差 74 5.1.2 雷射光強穩定度對量測結果造成之影響量 76 5.1.3 雷射反射及漫射現象 78 5.1.4 表面形貌量測分析區域數目探討 79 5.1.5 不同軸向角度變化量之誤差量 84 5.2 隨機誤差(Random Error) 86 5-2-1 環境振動 86 5-2-2 電子雜訊 87 5-3 小結 87 第六章 結論與未來展望 88 6.1 結論 88 6.2 未來展望 89 參考文獻 90 附件 96

    [1]. 吳家宇,雙光束量測藍寶石晶圓曲率及薄膜應力,國立交通大學,碩士論文,2011。
    [2].R. E. Powell and I. C. Ume, “A novel projection moiré system for measuring PWBA warpage using simulated optimized convective reflow process,” J. Electron Packaging, 131, p.021006, 2009.
    [3].R. E. Powell and I. C. Ume, “Simultaneous measurement of PWB and chip package warpage using the projection moiré technique and automatic image segmentation,” IEEE ECTC, pp.607-613, 2006.
    [4]. A. Bagno, M. Genovese, A. Luchini, M. Dettina, M. T. Conconi, A. M. Menti , Pier Paolo Parnigotto, and C. D. Bello, “Contact profilometry and correspondence analysis to correlate surface properties and cell adhesion in vitro of uncoated and coated Ti and Ti6Al4V disks,” Biomaterials, 25, pp.2437-2445, 2004.
    [5]. C. A. Brown and G. Savary, “Describing ground surface texture using contact profilometry and fractal analysis,” Wear, 141, pp.211-226, 1991.
    [6]. J. V. Macpherson and P. R. Unwin, “Combined scanning electrochemical-atomic force microscopy,” Anal. Chem., 72, pp.276-285, 2000.
    [7]. S. D. Solares and G. Chawla, “Triple-frequency intermittent contact atomic force microscopy characterization: simultaneous topographical, phase, and frequency shift contrast in ambient air,” J. Appl. Phys., 108, p.054901, 2010.
    [8]. H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: Technique, interpretation and applications,” Surf. Sci. Rep., 59, p.1-152, 2005.
    [9]. D. J. Müller and Y. F. Dufrêne, “Atomic force microscopy: a nanoscopic window on the cell surface,” Trends Cell Biol., 21, pp.461-469, 2011.
    [10]. C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler,” Wear, 190, pp.76-88, 1995.
    [11]. 郭曉文,氮化鈦薄膜在Si(111)基板上磊晶成長,國立清華大學,碩士論文,2008。
    [12]. R. Wiesendanger and E. Meyer, “Noncontact atomic force microscopy,” NNL, 2009.
    [13]. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, “Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy,” Surface Science Letters, 290, pp.L688-L692, 1993.
    [14]. K. C. Fan, “A non-contact automatic measurement for free-form surface profiles,” Comput. Integr. Manuf., 10, pp.277-285, 1997.
    [15]. J. G. D. França, M. A. Gazziro, A. N. Ide, and J. H. Saito, “A 3D scanning system based on laser triangulation and variable field of view,” IEEE ICIP, 1, 2005.
    [16]. M. Demeyere, D. Rurimunzu, and C. Eugène, “Diameter measurement of spherical objects by laser triangulation in an ambulatory context,” IEEE TIM, 56, pp.867-872, 2007.
    [17]. L. Sadowski, “Application of three-dimensional optical laser triangulation method for concrete surface morphology measurement,” IJEMS, 21, pp.692-700, 2014.
    [18]. Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol., 21, pp.339-341, 1989.
    [19]. J. H. Wu, R. S. Chang, and J. A. Jiang, “A novel pulse measurement system by using laser triangulation and a CMOS image sensor,” Sensors, 7, pp.3366-3385, 2007.
    [20]. O. Sasaki, and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Optics, 25, pp.3137-3140, 1986.
    [21]. I. Yamaguchi, A. Yamamoto, and M. Yano, “Surface topography by wavelength scanning interferometry,” Opt. En., 39, 40-46,2000.
    [22]. 潘安勝,相位移干涉系統之平坦度量測,國立台灣科技大學,碩士論文,2005。
    [23]. 杜宜亮,應用瞬間相位移干涉術於表面形貌量測,國立台灣科技大學,碩士論文,2008。
    [24]. K. A. U. S. H. A. L. Verma and B. Han, “Warpage measurement on dielectric rough surfaces of microelectronics devices by far infrared Fizeau interferometry,” Journal of Electronic Packaging, 122, pp.227-232, 2000.
    [25]. B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Optics, 24, pp.1489-1497, 1985.
    [26]. 黃奕棠,高反射性表面形貌之光學量測研究,國立成功大學,碩士論文,2006。
    [27]. Y. Y. Wang and P. Hassell, “Measurement of thermally induced warpage of BGA packages/substrates using phase-stepping shadow moiré,” IEEE Trans. Compon. Packag. Manuf. Technol., pp.283-289, 1997.
    [28]. R. E. Powell and I. C. Ume, “Simultaneous measurement of PWB and chip package warpage using the projection moiré technique and automatic image segmentation,” IEEE ECTC, pp.607-613, 2006.
    [29]. H. Ding, R. E. Powell, C. R. Hanna, and I. C. Ume, “Warpage measurement comparison using shadow moiré and projection moiré methods,” IEEE Trans. Compon. Packag. Manuf. Technol., 25, pp.714-721, 2002.
    [30]. 鄭仲豪,應用相位移陰影疊紋量測高溫下晶圓的變形,國立成功大學,碩士論文,2002。
    [31]. 張耀中,閃頻疊紋法應用於晶圓翹曲量測之開發,國立台灣科技大學,碩士論文,2015。
    [32]. 蔡宇軒,疊紋式晶圓翹曲量測技術之開發,國立台灣科技大學,碩士論文,2014。
    [33]. 張量凱,靜電式微驅動器之分析,國立華梵大學,碩士論文,2007。
    [34]. F. P. Chiang and C. J. Lin, “Time-average reflection-moiré method for vibration analysis of plates,” Appl. Optics, 18, pp.1424-1427, 1979.
    [35]. X. Su, Q. Zhang, Y. Wen, and L. Xiang, “Time-average fringe method for vibration mode analysis,” SPIE, pp.752257-752257, 2009.
    [36]. L. A. Salbut, K. Patorski, M. Jozwik, J. M. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active microelement testing by interferometry using time-average and quasi-stroboscopic techniques,” SPIE, pp.23-32, 2003.
    [37]. S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” SPIE, pp.51-60, 2001.
    [38]. K. Pokorski and K. Patorski, “Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform,” Appl. Optics, 49, pp.3640-3651, 2010.
    [39]. K. A. Stetson and B W. R. rohinsky, “Fringe-shifting technique for numerical analysis of time-average holograms of vibrating objects,” JOSA A, 5, pp.1472-1476, 1988.
    [40]. W. C. Wang, C. H. Hwang, and S. Y.Lin, “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Appl. Optics, 35, pp.4502-4509, 1996.
    [41]. G. Pedrini and H. J. Tiziani, “Double-pulse electronic speckle interferometry for vibration analysis,” Appl. Optics, 33, pp.7857-7863, 1994.
    [42]. M. Hart, R. Conant, K. Lau, and R. Muller, “Stroboscopic phase-shifting interferometry for dynamic characterization of optical MEMS,” SPIE, 3749, pp. 468-469, 1999.
    [43]. L. C. Chen, Y. T. Huang, X. L. Nguyen, J. L. Chen, and C. C. Chang, “Dynamic out-of-plane profilometry for nano-scale full-field characterization of MEMS using stroboscopic interferometry with novel signal deconvolution algorithm,” Opt. Laser Eng., 47, pp.237-251, 2009.
    [44]. J. A. Conway, J. V. Osborn, and J. D. Fowler, “Stroboscopic imaging interferometer for MEMS performance measurement,” J. Microelectromech S., 16, pp.668-674, 2007.
    [45]. A. Bosseboeuf, P. Nerin, P. Vabre, S. Petitgrand, and R. Yahiaoui, “Three-dimensional full-field dynamical characterization of micromechanical devices by stroboscopic white light scanning interferometry,” SPIE, pp.36-42, 2001.
    [46]. 楊哲修,閃頻極化光學同調斷層掃描顯微鏡於動態位移量測之應用,國立中正大學,碩士論文,2010。
    [47]. G. Yang, C. Sun, P. Wang, and Y. Xu, “High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement,” Appl. Optics, 53, pp.174-183, 2014.
    [48]. K. Creath and J. C. Wyant, “Moiré and fringe projection techniques,” Optical Shop Testing, pp.653-685, 1992.
    [49]. Y. Saito, W. Gao, and S. Kiyono, “A micro-angle sensor based on laser autocollimation,” SPIE, pp.60520Q-60520Q, 2005.
    [50]. M. A. El-Morsy, K. Harada, M. Itoh, and T. Yatagai, “A subfringe integration method for multiple-beam Fizeau fringe analysis,” Opt. Laser Technol., 35, pp.223-232, 2003.
    [51]. M. Wang, L. Ma, D. Li, and J. Zhong, “Subfringe integration method for automatic analysis of moire deflection tomography,” Opt. Eng., 39, pp.2726-2733, 2000.
    [52]. 張柏奕,應用條紋投影法及條紋反射法量測物體表面形貌,國立成功大學,碩士論文,2005。
    [53]. R. Shinozaki, O. Sasaki, and T. Suzuki, “Fast scanning method for one-dimensional surface profile measurement by detecting angular deflection of a laser beam,” Appl. Optics, 43, pp.4157-4163, 2004.
    [54]. 林器躉,閃頻式光干涉動態量測系統之研製,國立台灣大學,碩士論文,2005。
    [55]. A. Bosseboeuf, P. Nerin, P. Vabre, S. Petitgrand, and R. Yahiaoui, “Three-dimensional full-field dynamical characterization of micromechanical devices by stroboscopic white light scanning interferometry,” SPIE, pp.36-42, 2001.

    QR CODE